
Python Simply

Finn Aakre Haugen

12th November 2019

Contents

1 Introduction 3

1.1 About Python . 3

1.1.1 Python - in few words 3

1.1.2 Why choose Python? 3

1.1.3 How popular is Python? 4

1.1.4 When is Python not useful? 6

1.1.5 Who holds the threads? 6

1.2 Impatient? . 8

1.3 Program input, output and workspace 12

1.4 Why include programming in teaching? 14

2 Programming environments 17

2.1 Installation of Python 17

2.2 Spyder . 19

2.2.1 How to open Spyder 19

2.2.2 How to run Python program code in Spyder . . 20

2.2.2.1 Run program code on command line . 21

2.2.2.2 Run program code via script 23

2

CONTENTS CONTENTS

2.2.3 Setting the preferences of Spyder 26

2.2.4 Help in Spyder 27

2.3 Jupyter Notebook . 30

2.3.1 How to start Jupyter Notebook 30

2.3.2 How to create and edit Notebook documents . . 31

2.3.3 How to run Notebook documents 33

2.3.4 How to Save Notebook Documents 34

2.3.5 Help in Jupyter Notebook 35

2.4 Visual Studio Code . 36

2.4.1 How to install and launch Visual Studio Code . 36

2.4.2 Connect Python to VS Code 37

2.4.3 Open (create) workspace 38

2.4.4 How to create and run a Python program . . . 39

2.5 The Python command line in the Anaconda command
window . 40

2.6 Import and use of Python packages and modules 41

2.6.1 Packages management with conda or pip 41

2.6.2 Built-in functions in Python (standard package) 43

2.6.3 Import of packages included with the Anaconda
distribution . 44

2.6.4 Installation and import of packages not included
with the Anaconda distribution 49

3 Variables and data types 50

3.1 Introduction . 50

3.2 How to run the code samples? 50

3

CONTENTS CONTENTS

3.3 Variables . 51

3.3.1 What is a variable? 51

3.3.2 Why use variables when you can always use values? 52

3.3.3 How to choose variable name 53

3.4 A little about functions 54

3.5 Numbers and basic mathematical operations 56

3.5.1 Numbers types 57

3.5.2 How to format numbers in print() function . . . 57

3.5.3 Mathematical operators 59

3.6 Text strings (strings) 61

3.7 From numbers to text and from text to numbers 62

3.8 Boolean variables, logical operators and comparison op-
erators . 65

3.8.1 Introduction . 65

3.8.2 Boolean variable 66

3.8.3 Logical operators 66

3.8.4 Comparison operators 68

3.9 Lists . 69

3.9.1 What are lists? 69

3.9.2 Operations on lists 70

3.9.2.1 Reading list elements 70

3.9.2.2 How to update list items with new values 73

3.9.2.3 Expand lists with new items 74

3.9.2.4 Remove list items 76

4

CONTENTS CONTENTS

3.9.2.5 List manipulation with + and * 76

3.10 Tuples . 77

3.11 Dictionary . 79

3.12 Arrays . 80

3.12.1 Introduction . 80

3.12.2 How to convert lists to arrays and vice versa . . 81

3.12.2.1 Conversion from list to array 81

3.12.2.2 Conversion from array to list 81

3.12.3 Create arrays of special design 82

3.12.3.1 Arrays with equal element values . . . 82

3.12.3.2 Array with fixed increment between el-
ements 84

3.12.3.3 Multidimensional or n-dimensional arrays 85

3.12.4 Array operations 87

3.12.4.1 Introduction 87

3.12.4.2 The size of an array 87

3.12.4.3 Read element values in an array 88

3.12.4.4 Update elements in an array 90

3.12.4.5 Expand arrays with new elements . . . 90

3.12.4.6 Remove elements from arrays 91

3.12.4.7 Find the maximum and minimum in ar-
rays 92

3.12.5 Mathematical operations on arrays, including ma-
trices . 92

3.12.5.1 Scalar addition and scalar multiplication 92

5

CONTENTS CONTENTS

3.12.5.2 How to create row vectors and column
vectors and arrays 93

3.12.5.3 Vector and matrix multiplications . . . 96

3.12.6 Matrix functions for linear algebra 100

3.12.7 Vectorized calculations 100

4 Presenting data in charts and diagrams 106

4.1 Introduction . 106

4.2 Line plot . 106

4.2.1 Basic plot functions 107

4.2.2 Viewing Plots in the Spyder Console or External
Window? . 110

4.2.2.1 Plot figures to be shown in the Spyder
console 110

4.2.3 How to plot multiple curves at the same time . 113

4.2.3.1 Multiple curves in one and the same di-
agram 113

4.2.3.2 Multiple plots in a figure using subplot 117

4.2.4 Mathematical symbols in chart title 119

4.2.5 How to set the size of the plot figure 120

4.3 Bar charts . 121

4.4 Pie charts . 123

4.5 Histogram . 125

4.6 Interactive plots . 127

5 Programming of functions 134

5.1 Introduction . 134

6

CONTENTS CONTENTS

5.2 How to program functions 135

5.2.1 Basic function definition 135

5.2.2 How to return more than one value 138

5.2.3 Default value function arguments 139

5.2.4 Function call using keyword argument 140

5.2.5 * args and ** kwargs 141

5.2.6 Documentation text (docstring) 142

5.3 Namespace . 144

5.4 Programming of modules 147

5.5 Lambda functions . 150

6 Testing your own code 152

6.1 Introduction . 152

6.2 How to test for functional errors? 153

6.3 How to run only part of the program? 157

7 Conditional program execution with if-structures 159

7.1 if-else . 159

7.2 Without else . 161

7.3 elif . 163

8 Iterated program runs with for loops and while loops 164

8.1 Introduction . 164

8.2 For loops . 165

8.2.1 Basic programming of for loops 165

8.2.2 How to write to array elements in a for loop . . 167

7

CONTENTS CONTENTS

8.2.3 Preallocation of arrays to save execution time . 169

8.3 While loops . 172

9 Write and read file data 175

9.1 Introduction . 175

9.2 File Formats . 175

9.2.1 Textual data files 175

9.2.2 Binary data files 177

9.3 Write data to file . 178

9.4 Read data from file . 180

Bibliography 182

8

Preface

This book is written for anyone who wants to learn how to program in Python for
calculations – students and academic staff at universities and colleges, students
and teachers in schools and professionals in business.

A little about my own background: I am a professor1 at the University of
South-Eastern Norway (USN), campus Porsgrunn. My field of expertise is
engineering cybernetics, or automatic control in simpler terms. My education is
MSc at the Norwegian Institute of Technology (which is now part of the
Norwegian University of Science and Technology) and a PhD at Telemark
University College (which is now part of the USN). I have long experience from
teaching in universities and in the industry.

Programming is an important part of all the courses I teach. Students use
programming in both theoretical and practical assignments. The programming
languages that I use in these courses are Python, LabVIEW and MATLAB.

It is great for us, users, that Python is free! So, you can install the Python
interpreter – the Python machine – and good programming tools on your own PC
- free of charge. (How to get Python is described in Chap. 2.)

Most illustrations in the book are in the form of hand drawings (drawn in
Powerpoint on a touch screen PC), not rectilinear drawings. It is a conscious
choice. Drawing by hand is more natural and makes it easier to express the
meaning of the illustration.

I have chosen to use the same font type and font size for both plain text and
Python (Python-specific) names and concepts. It should be clear from the context
what is English and what is Python code.

The book contains many numbered examples. Some of the examples illustrate a
method or approach and follow after the method is explained. Other examples are
used to introduce a method.

The book contains no exercises, but maybe there will be exercises in a later
edition. In any case, a teaching program for learning Python programming must

1Norwegian title is “dosent”.

1

CONTENTS

include practice assignments adapted to students or the student’s backgrounds
and the nature of the subject or course.

I hope the book is easy to understand. If you have comments on the book
(negative and positive criticism, or suggestions for changes), please feel free to
send them to my email address listed below. The comments will be helpful when
revising the book.

Thanks to Marius Lysaker for professional comments, and to Mercedes Noemi
Murillo Abril for assistance with translation.

This book is based on Python version 3.7.3 installed on a PC running Windows
10.

The book and program files are freely available on home.usn.no/finnh/books. In
case of any revisions, earlier versions of the book and a changelog will be available
at the address mentioned above.

This book focuses on Python programming techniques, and not so much on
applications. Some good references for applying Python for scientific computing,
with applications are (Langtangen 2016) and (Linge & Langtangen 2016). I also
mention Haugen (2019) which contains Python examples about simulation,
control, optimization, modeling, etc.

Finn Aakre Haugen

Website: home.usn.no/finnh

Email: finn.haugen@usn.no

University of South-Eastern Norway, campus Porsgrunn
August 2019

2

Chapter 1

Introduction

1.1 About Python

1.1.1 Python - in few words

Python is a programming language developed by Guido van Rossum.
Python was launched in 1991 and is constantly evolving. Through this
book, you will learn the basics of Python programming and how to apply
Python to obtain numerical solutions to mathematical problems. Python
can also be used for many applications other than calculations like text
processing, file processing, and data communication, but this book is
focused on using Python for calculations.

1.1.2 Why choose Python?

There are many alternative programming languages. Why choose Python?
Some reasons:

• Python is free.

• Python python can run on different platforms: Windows, Mac and
Linux.

• Python python is a powerful language for calculations (on the same
level as MATLAB).

• Python makes (really: forces) the programmer to create program
code with good visual structure.

3

1.1. ABOUT PYTHON

• Python is popular and widespread.1

• A great amount of material is freely available online.

1.1.3 How popular is Python?

StackOverflow’s assessment

StackOverflow2 runs a popular programming site. If you search for help in
programming on Google, StackOverflow is often among the highest on the
hit list – that can have a variety of causes, of course, you can read:

“June 2017 was the first month that Python was the most visited tag on Stack
Overflow within high-income nations. This included being the most visited tag
within the US and the UK, and in the top 2 in almost all other high income
nations (next to either Java or JavaScript). This is especially impressive because
in 2012, it was less visited than any of the other 5 languages, and has grown by
2.5-fold in that time.”

Figure 1.1 shows the popularity of well-known programming languages
measured in number of searches to StackOverflow during the period
2009-2019. Python is at its peak in 2019. (One might also think that the
number of searches is not just due to popularity... :-)

1If using a specific programming language is somehow enforced, its deployment may
be greater than its popularity, but since Python is a freely available language that has
been around for almost 30 years, we may count on popularity and deployment going
hand-in-hand.

2https://stackoverflow.blog/2017/09/06/incredible-growth-python/

4

1.1. ABOUT PYTHON

Figure 1.1: The popularity of well-known programming languages measured
by the number of searches to StackOverflow during the period 2009-2019

TIOBE’s assessment

The company TIOBE (“The Importance Of Being Earnest”), which
evaluates and ranks software, has made a statistic that provides a picture
of Python’s popularity (https://www.tiobe.com/tiobe-index/). The
TIOBE index (in percent) is based on the number of professional
programmers, courses, and third-party vendors using the various
languages. The TIOBE index based on numbers from searches on Google,
Bing, Yahoo!, Wikipedia, Amazon, YouTube, and Baidu. Figure 1.2 shows
the TIOBE index of well-known programming languages.

Figure 1.2: TIOBE scores of well-known programming languages

TIOBE suggests that Python could pass C and Java in popularity in

5

1.1. ABOUT PYTHON

2022-2023:

“TIOBE Index for June 2019 June Headline: Python continues to soar in the
TIOBE index This month Python has reached again an all time high in TIOBE
index of 8.5%. If Python can keep this pace, it will probably replace C and Java
in 3 to 4 years time, thus becoming the most popular programming language of
the world. The main reason for this is that software engineering is booming. It
attracts lots of newcomers to the field. Java’s way of programming is too verbose
for beginners. In order to fully understand and run a simple program such as
"hello world" in Java you need to have knowledge of classes, static methods and
packages. In C this is a bit easier, but then you will be hit in the face with
explicit memory management. In Python this is just a one-liner. Enough said.”

1.1.4 When is Python not useful?

Python is a textuial programming language. Python can not be used for
graphical programming. By graphic programming I mean here that
function blocks are linked with signal lines in a digital “drawing sheet”, ie
the output of one block is connected to input of another block, graphically.
(LabVIEW and Simulink are examples of graphical programming tools.)

1.1.5 Who holds the threads?

Who makes sure Python is tame and trustworthy? The Python
development and publishing organization is The Python Software
Foundation (PSF)3, whose website is

http://python.org

Figure 1.3 shows the PSF website.

3From PSFs website: “The Python Software Foundation is an organization devoted to
advancing open source technology related to the Python programming language.”

6

1.1. ABOUT PYTHON

Figure 1.3: Website of Python Software Foundation (PSF) at
http://python.org

The PSF website contains Python installation files, documentation,
tutorials, overview of Python packages, etc. Figure 1.4 shows the website
of the documentation of Python 3.7.3, which per. May 2019 is the latest
version of Python.

7

1.2. IMPATIENT?

Figure 1.4: The website for documentation of Python 3.7.3

Although you can install Python from an installation file on the PSFs
website, it is quite common for users of Python to install Python through a
so-called Python distribution, which is a collection of Python itself and
various additional tools. The most popular distribution is Anaconda,
which is described in more detail in Chap.2.1.

1.2 Impatient?

I assume that you are impatient to see what Python programming is all
about. We will therefore go through an example of a Python program that
contains many of the elements that you can use in your own programs.
Although I try to explain the program in some detail, I do not expect you
to understand every part of the explanation. The most important thing
now is that you get an idea of what Python programming is typically
about and get acquainted with some Python concepts and expressions.

Note: I do not expect you to program this example yourself now. The
purpose of the example is instead to show a typical program, so that you

8

1.2. IMPATIENT?

get a realistic idea of what a typical Python program looks like and how it
works.

I will make comments to individual code lines, but let’s first take a look at
a typical structure of Python programs. Figure 1.5 shows a typical
structure of programs which make calculations and plot data. The
example we are going to look at has this particular structure, except that
the example contains no definitions of functions (defining your own
functions is the topic in Chapter 5). Python executes or runs the program
code from the top to down. Assuming a structure as shown in Figure 1.5,
the Python will run the program code under “Initialization of variables”
before the code under “Calculations” are run.

Figure 1.5: A typical structure of a program to perform calculations and
plot data

Here is the example.

Example 1.1 Python program for plotting temperature data

I have created a program that calculates the mean value of the monthly
temperatures in Skien over the period 2005 – 2015 and plots these mean
temperatures vs. month.4 The programming environment is Spyder, which
is a popular programming environment for Python. You will get to know
Spyder in Chap. 2.2.

Figure 1.6 shows the calculated mean and plot generated by the program
when it is run in Spyder. The program (or script) is shown in the editor

4The data is taken from https://www.timeanddate.no/vaer/norge/skien/klima.

9

1.2. IMPATIENT?

window on the left, while the results of the program run, ie the mean and
the plot, are shown in the console in the lower right. (The information in
the Help window in the upper left is not interesting here.)

Program name: prog temp skien 2019 08 20 v01.py

Figure 1.6: The program for calculating the temperature mean and plotting
the monthly temperatures in Skien

Below are comments on the program:

• Python runs, or executes, the program code from the top to the
bottom.

• The text between lines 1 and 10, ie between the two sequences of
three quotation marks, """, are comments – so-called block
comments. This text, which we can say constitutes the program head
, provides what-who-when information about the program. An
informative program header will be very useful, especially a while
after the program was created, since details are often forgotten.

• The text after the #-characters in various places in the program are
also comments, so-called inline comments. According the so-called

10

1.2. IMPATIENT?

PEP 8 for good code style rules5, there should be two blank
characters in front of #, and one blank after.

• Python neglects both block comments and inline comments when it
runs the program. You can take advantage of this when
programming: Suppose you have written some program lines that
you do not want to include during program execution. Instead of
removing the program lines completely, you can hide or “comment
off” the code lines.6

• According to the PEP 8 rules, comments should be written in
English, but I believe that “educational” comments, ie explanatory
and “over-detailed” comments, may well be written in Norwegian in
Norway and Vietnamese in Vietnam, etc.

• In the program, the temperature values are integers. Had the
temperatures been decimal, or floating point, numbers, we should
have written e.g. 2.1 (period, not comma, is used as decimal
separator in Python).

• Line 14: The command imports numpy as np command imports the
package named numpy (“numeric python”) into Python and makes
the package available in our program through the name np. It is
common Python tradition to rename numpy to np. The numpy
package contains mathematical functions. In our program we use two
different functions from the numpy package, as explained below.

• Line 15: The command imports matplotlib.pyplot as plt imports the
matplotlib package with its module (a module is a collection of
functions) called pyplot and makes the module available in our
program through the name plt. Also this renaming is tradition in
Python.

• Line 19: We use the numpy function array to define the array named
months consisting of numbers representing the month numbers. Note
that we put the package name before the function name, ie np.array.
We say that month is a variable of the data type array.

• Line 20: We use the numpy function array to define the array called
temp consisting of the temperature value for each month. temp is a
variable of the data type array.

5PEP is short for Python Enhancement Proposal. PEP8: Style Guide for Python
Code, see https://www.python.org/dev/peps/pep-0008/.

6You can switch between commenting/uncommenting with the keyboard combination
Ctrl+1.

11

1.3. PROGRAM INPUT, OUTPUT AND WORKSPACE

• Line 24: We use the numpy function named mean to calculate the
mean of the array temp (which was defined in line 20). The variable
mean temp gets (or is assigned) a value equal to this calculated
mean.

• Line 25: The command is used to “print” or present in the Spyder
console, the text “Mean montly ...” followed by the value of
mean temp. The console is the window to the bottom right of
Spyder, see Figure1.6.

• Lines 29-37 open (make) Figure # 1, and plot the temperatures as a
function of the month numbers, with filled circles for each point or
pair of pairs and with a straight line between the points. The lowest
and highest values of the x and y axes are defined (xlim and ylim,
respectively). Figure title (title) and axes (xlabel and ylabel) are
generated. The plot gets grid. And finally, the figure with the show
function appears. All of these different functions that help create the
figure, belong to the plt module. Therefore, plt is in front of each
function name.

• Line 38: According to the PEP 8 rules mentioned above, there
should be a blank line at the end.

[End of Example 1.1]

We will come back to more details about these topics throughout the book.

1.3 Program input, output and workspace

A Python program is an abstract “thing”. You cannot physically touch a
program, and so it is often called software. When the computer
microprocessor executes the instructions expressed in the program code,
the program runs. It is when it runs, that it does something, and it can
then be considered a “process”. This chapter will develop an understanding
of the fundamental aspects of this process, ie the running of a program.

A running Python program produces an output from an input. The
program has a workspace which is kind of a worktable of the program.
Figure 1.7 illustrates the input and output and workspace.

12

1.3. PROGRAM INPUT, OUTPUT AND WORKSPACE

Figure 1.7: A program’s inputs and outputs and workspace

Here is a description of Figure 1.7:

• Workspace contains all the variables with their values. The content
of the workspace is retained after the program is stopped, and still
exists when the same or another program is started. The workspace
is automatically deleted when you exit the programming tool (for
example, Spyder).

• Input data is typically numeric data and textual data that the
program uses in its data processing. The inputs exist in the work
area. The inputs can have several sources:

– Variables with values defined in the program itself, e.g. the
array named month in the program shown in Figure 1.6.

– The keyboard where we have written text or numbers. The data
can be read into the workspace with Python’s input() function,
which is described in more detail in Chap. 3.7.

– File with numeric data or textual data. The data can be loaded
from the file into the workspace using the general open()
function. If the data is numeric data in the form of “text” that
we can read with the naked eye, the loadtxt() function in the
numpy package is more appropriate than the open() function.
The use of loadtxt() is described in Chap. 9.4.

– Port, ie a communication port on the computer. A typical
application is continuous reading of measurement data from
sensors that generate voltage values which, after being
converted to digital values, are read through a USB port.

13

1.4. WHY INCLUDE PROGRAMMING IN TEACHING?

• Output data is typically the numeric or textual data that the
program generates when running. The output exists in the
workspace. The output may have multiple recipients:

– The workspace itself. Variables that get their values as a result
of the program run are available for use in the running program
code.

– The console in the current programming tool, e.g. Spyder
console shown in the lower right in 1.6. The print() function,
which we encounter throughout the book, is used to write
numeric data and textual values to the console. The plot()
function of the numpy package can be used to plot data in
Figures in the console, or alternatively in separate Figures,
outside the Spyder window, cf. Section 4).

– File. Data in the workspace can be written to file using. the
general open() function. If the data is numeric data in the form
of "text", the savetxt() function in the numpy package is more
appropriate than the open() function. The use of savetxt() is
described in Chap. 9.3.

– Port. A typical application is continuous writing of control
signals calculated by our Python program, to so-called actuators
such as motors, pumps, valves, heating elements, lamps,
switches, etc. via a USB port.

1.4 Why include programming in teaching?

You probably have your own opinion on the extent to which programming
is important in teaching STEM courses (science, technology, engineering,
mathematics). My opinion is that programming can play an important
role in teaching because programming is in line with the core principles of
teaching: motivation, concretization, activation, collaboration and
individualization:

• Motivation : Programming motivates for theory in mathematics
and science because learners see that programming is useful for
applying theory. It is also motivating to see that programming is a
very important tool for solving practical problems in various
disciplines, such as simulation, mathematics, data analysis, statistics,
mathematical modeling, monitoring and control of physical systems,
etc.

14

1.4. WHY INCLUDE PROGRAMMING IN TEACHING?

• Activation : Through programming, students will work actively
with the theory, and understanding and learning of the theory will be
developed. Programming also provides an increased opportunity for
experimentation. One can greatly benefit from pre-made programs,
but in my experience, it is more instructive to program solutions
yourself than to use pre-made programs, as illustrated in Figure 1.8.

• Concretization : Programming is a bridge between theory and
applications, see Figure 1.9. With programming, theory can be
applied to concrete applications. This develops understanding and
learning of the theory, and one can also see to what extent the theory
is effective in practice.

• Individualization : Programming provides good opportunities for
individual adaptation of the teaching since one can work or try out
at one’s own pace.

• Collaboration : Programming also provides good opportunities for
collaboration by having students or students discuss solutions and/or
contribute to common programming tasks.

Figure 1.8: Through programming, students will work actively with theory,
and understanding and learning will be developed.

15

1.4. WHY INCLUDE PROGRAMMING IN TEACHING?

Figure 1.9: Programming is a bridge between theory and applications.

16

Chapter 2

Programming environments

2.1 Installation of Python

There are several ways to get Python:

• http://python.org, which is the home page of the official Python
organization The Python Software Foundation (PSF).

• http://anaconda.com, which is the website of the company
Anaconda. From this homepage you can download and install the
so-called Anaconda distribution, which is arguably the world’s most
popular distribution for Python. This distribution contains the
“Python machine” itself, which runs the program code, and various
useful tools for the programming (writing programs). Lots of useful
Python packages are automatically installed with the Anaconda
distribution, which may save you some work related to finding and
installing packages yourself (but how to do it yourself, is described in
Section 2.6.4).

I recommend installing the Anaconda distribution, which is available for
Windows, Mac and Linux. Mac and Linux are only available in 64-bit
versions. For Windows, you can choose between 32-bit version and 64-bit
version. It is common with 64-bit PCs today, so it is natural to choose the
64-bit version.

After installing the Anaconda distribution, Anaconda is on the PC start
menu, see Figure 2.1.

17

2.1. INSTALLATION OF PYTHON

Figure 2.1: Anaconda on the PC start menu

Some information about the various tools available under the Anaconda
menu:

• Anaconda Navigator , presenting the various tools included with
the Anaconda distribution, see Figure 2.2.

• Anaconda Prompt , which is an Anaconda command window
where we can start a (simple) programming environment for Python
programming.

• Jupyter Notebook , which is a Python programming environment
displayed in a web browser. In Jupyter Notebook we can create
so-called Notebook documents, which can contain a mixture of
Python program code and information (not program code) in the
form of plain text, Latex formatted text (to display mathematical
expressions in “book quality”), plots, user interface graphic elements,
etc.

• Spyder , which is a thoroughbred programming environment for
Python. (I use Spyder in my own programming.)

18

2.2. SPYDER

We will become acquainted with all the three programming environments
mentioned above in the subsequent subsections.

Figure 2.2: Anaconda Navigator

2.2 Spyder

2.2.1 How to open Spyder

We can open Spyder in two ways:

• Via Spyder button in Anaconda Navigator, see Figure 2.2.

• Via Spyder button under Anaconda on the PC start menu, see
Figure 2.1.
It can also be convenient to make Spyder available also via a button
on your PC’s taskbar: Right-click the Spyder icon in the Start menu
/ More / Pin to the taskbar.

Figure 2.3 show Spyder with its three standard windows:

• Editor . The scripts you open will be accessible via their own tab at
the top of the editor window.

19

2.2. SPYDER

• Console . The console usually displays the IPython console
(interactive Python console). The History log tab shows previous
commands.

• Help. The Help window normally displays information about
functions. The Variable explorer tab in the Help window displays the
variables found in Python’s workspace. The File explorer tab shows
the files that are in the Pythons workbook, which is the folder where
the most recently run program (script) is stored.

Editor

Console

Help

Figure 2.3: Spyder with the three standard windows

2.2.2 How to run Python program code in Spyder

There are two ways to make your PC run Python program code:

• Command line : You enter the program code on the command line
in the console, and execute the code by clicking the Enter key on the
keyboard.

• Script : You write the program code in a script in the editor. A
script is a text file where you have entered the program code. To run
the script, you can either press the F5 key on the keyboard or click

20

2.2. SPYDER

the green Run file button in the toolbar in Spyder. We may say
program instead of script, although a program can actually be in the
form of code run one by one the command line. (So program is a
more general term than script.)

Let’s try both ways. It is a general tradition in programming that the
Hello World example is the very first programming code example, so let’s
take that example.

2.2.2.1 Run program code on command line

Type the program code print (’Hello World’) on the command line in the
console, see Figure 2.4. (Do nothing else for now than write this program
code. In other words, do not press any keys other than the appropriate
text keys.)

Figure 2.4: The program code print (’Hello World’) written on the command
line in the Spyder’s console

The text In [1]: on the command line indicates that the expression that
follows is a so-called command or program code that Python should run or
execute. The text In is the abbreviation for input. The number after In,
here 1, indicates the command number counted from when this console
was opened or started after we opened Spyder.

21

2.2. SPYDER

print(), which is part of this first example of program code, is a function in
Python used to display values in the console. As with all other functions,
print() needs an input argument which is the “food” or “raw material”
that the function is to process. The input argument is specified in the
parentheses. In this example, the input argument is the text string ’Hello
World’ (remember to include the quotation marks).

So far we have only written the program code

print(’Hello World’)

on the command line, but have not yet run the code. To run the code, we
press the Enter key. Python then presents the result in the console, see
Figure 2.5.

Figure 2.5: The result is that the program code print(’Hello World’) is run
on the command line in the Spyder console.

Figure 2.4 shows how we enter the program code print (’Hello World’) in
the console in Spyder and Figure2.5 shows how the result of the program
run is presented in the console. If I were to show pictures of the console for
all the examples in the book, the book would be unnecessarily large.
Instead, the program code that we will write in the console or in a script
will be displayed in a box, as shown below.

>>> print(’Hello World’)

22

2.2. SPYDER

Where applicable, I show the result of the program run at the end of the
same text box (possibly in a separate text box), as here:

>>> print(’Hello World’)
Hello World

Some useful techniques when using the console command line

• You can enter multiple program expressions one after the other on
the command line. They are separated by a semicolon (;) Example:
print (’Hello World’); print (’Hello Moon’).

• Long program expressions can be broken and placed on new lines
with backslash (\).
Example:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 \
+ 11 + 12 + 13 + 14 + 15

• You can delete anything on the command line so that it is blank,
with the Esc button on the keyboard.

• You can find old lines that have text beginning with a given
character sequence by typing the character sequence and then
pressing the up arrow key on the keyboard, such as param↑, as when
we show lines that contain e.g. parameter1 and parameter2 and the
like. as the first character sequence.

• You can cancel running program code or a command with the Stop
the current command button in the upper right corner of the console.

2.2.2.2 Run program code via script

The script is a text file containing program code. (As I already pointed
out, we often just say program instead of script.) There are good reasons
to create a script and run program code via a script instead of running the
individual program expressions from the command line in the console:

• Automation : When the program code is comprehensive and
consists of many program lines. When running the script, all
program code is executed automatically.1

1While it is possible to write many and long program lines in the console, it can be
impractical to run programs this way.

23

2.2. SPYDER

• Storing (filing): When you want to store the program in a file, e.g.
for later use or for distribution.

We will now create and run a script that will contain the program code
print (’Hello World’). Figure 2.6 shows Spyder with the script in the
editor. (The Figure is a little ahead of the explanation and also shows the
result in the console after the script is run.) To accomplish this, we do the
following:

New
file

Run
Open Save

File
path

File
name

Script
(program)

Result of running
the script (the program)

Figure 2.6: Spyder with the script (in the editor) and the result of running
the script (in the console)

1. Open a new script : In the Spyder menu bar, click the New File
button. (Or make the File / New file menu option.) This opens a
new script.
As you can see, there is already some text in the newly opened
script. This is a so-called block commentary with informative text
about the script (program). You can freely edit this text. There
should be information about what the program does, who is the
author, contact information in the form of eg. email address, and
date of last update. Acc. PEP 8 good code style guidelines, there
should be two blank lines after this block comment.

24

2.2. SPYDER

2. Write the program code in the script : You can print (’Hello
World’) as shown in Figure 2.6. Acc. PEP 8 guidelines, scripts
should have a blank line at the end. When you have finished writing,
you can save the script (again). You can edit the text in Spyder as in
other editors (Word, Notepad, etc.):

• Copy-and-paste (Ctrl-c followed by Ctrl-v)

• Cut-and-paste (Ctrl-x followed by Ctrl-v)

• Delete (Ctrl-x)

• Undo (Ctrl-z)

• Redo (Ctrl-Shift-z)

3. Save the script : Although we have not yet written any program
code in the script, we can save the script using the Save button or the
File / Save menu option or the keyboard combination Ctrl-s. Choose
your own folder and file name. The file name will have so-called file
extension (extension) py, e.g. minfil.py. As you can see, I have
chosen the file name script hello world 2019 05 08 v01.py (where v
stands for version). In general, it is a good idea to save the script
frequently, often with new filenames if there are significant changes
between each time you save. One possible strategy for giving file
names is to include a brief description and time (date) and the letter
v followed by a number (1, 2, 3, ...) that tells which version of the
file I am now editing. Example: prog hello world 2019 05 08 v01.py.

4. Run the script : There are three alternative ways to run the script,
as listed below. The result of the run is shown in Figure 2.6.

(a) Run the file button in Spyder’s menu bar

(b) Function key F5 on the keyboard

(c) With the% run filename.py command, e.g.
prog hello world 2019 05 08 v01.py, on the console command
line. % run is a so-called magic command, which belongs to
IPython (abbreviation for Interactive Python), which is the user
interface to Python implemented in i.a. Spyder. There are
various magic commands. (In terms of plotting, we will meet
the magic command% matplotlib that we can use to decide
whether a plot should appear inside the Spyder console or in a
separate window, outside of Spyder.)

25

2.2. SPYDER

2.2.3 Setting the preferences of Spyder

The Tools / Preferences menu item shows different settings of Spyder, see
Figure 2.7.

Figure 2.7: The Tools / Preferences menu item displays various settings of
Spyder.

Here is an overview of the settings with comments:

• General : Here you have ability to change font type and font size.

• Keyboard shortcuts: No need to change anything here.

• Syntax coloring : No need to change anything here.

• Python interpreter : No need to change anything here.

• Run : General settings: You may want to enable Remove all
variables before execution. Thus, you can be pretty sure that a script
that works now will also work if you run the script in another or new
Python process (like after you closed and reopened Spyder to run the
script).

• Current working directory : No need to change anything here.

• Editor : Display / Highlight occurences after: I suggest 100 ms so
that Spyder quickly indicates different instances of a given variable in

26

2.2. SPYDER

the script. With the default setting of 1500 ms, Spyder seems
unnecessarily slow in terms of such an indication. I also suggest
enabling Real-time code style analysis, which means that a warning
triangle will appear in the left part of the editor if the code-style
rules as defined in PEP 82 wrap.

• IPython console : Graphics / Backend: The default setting Inline
means that plots (graphs) are displayed in the console. I usually
change to Automatic which allows plots to appear in a separate
window outside of Spyder, with various options for manipulating and
editing the plot.

• History log : No need to change anything here.

• Help: Here I propose to enable Editor and IPython console, which
means that information about a function is displayed in the Help
window, see Figure 2.3, when you type a parenthesis after the
function name, e.g. print().

• Variable explorer : No need to change anything here.

• Profiler : No need to change anything here.

• Static code analysis: No need to change anything here.

2.2.4 Help in Spyder

You totally depend on help when doing programming:

• Help find a suitable way to perform a programming task , eg.
help find a function that can calculate the square root of a number.
Some alternative ways to get help are:

– Textbooks

– Documentation and tutorials on the internet, eg. on the official
website of Python: http://python.org.

– Google search, which often leads to hits
http://stackoverflow.com.

– Ask people, e.g. fellow students and fellow students and tutors
and teachers

2PEP 8: Style Guide for Python Code, se https://www.python.org/dev/peps/pep-
0008/. (PEP = Python Enhancement Proposals)

27

2.2. SPYDER

• Help find syntax errors in your program code . A syntax error
is a program technical error.
Spyder finds syntax errors. Figure 2.8 shows an example where there
is a syntax error in the program code. Unfortunately, I wrote prnt
(’Hello World’) instead of the correct print (’Hello World’). We see
that Spyder already finds the bug in the editor before running the
program, and also gives an error message in the console after the
program is run.

The error is indicated during editing
(i.e. before the program is run)

Erroneous program code
(correct is print)

The error is reported by
Python after you have

run the program.

Figure 2.8: Spyder finds syntax errors.

Usually you use some built-in (pre-made) Python function in your
programs, e.g. print() function. You can get information on how to use
such functions, as mentioned above. Alternatively, you can get information
about such functions – or general objects – directly in Spyder in two ways,
see Figure 2.9:

• By pressing Ctrl + I (capital I) in front of the function
name in the script (possibly on the command line). The information
is then displayed in the Help window.
Note: If the function you are using comes from a package or module
that you have imported into Python using the import command
(such import is discussed in Chap. 2.6), you must include the
package or module name in front of the function name itself and
press Ctrl + I in front of the package or module name. Example:
np.sqrt(), where it is assumed that you have previously executed the

28

2.2. SPYDER

import numpy as np command. numpy is a package that contains the
sqrt() function. Here you have to press Ctrl + I in front of np.sqrt().

• With the help() command executed in the console (but this
information is not always easy to read).

Press Ctrl+I
(Ctrl + capital I)

before the object or
function name.

The information is
then shown in the

Help window.

Information shown in the console
using the help() command.

Figure 2.9: Information about built-in functions can be displayed directly
in Spyder in two ways: With Ctrl + I in front of the function name or using
the help() command.

Instant information in Spyder about the syntax of function

You can get instant information in Spyder about the syntax of the function
while writing the program code: As soon as you enter the function name
and start typing the parentheses to enter the function arguments, the
function syntax appears in a small field in the editor, see Figure 2.10.

29

2.3. JUPYTER NOTEBOOK

Figure 2.10: In Spyder, the function syntax is displayed in a small field in
the editor as soon as you enter the function name and begin writing the
parentheses for the input arguments.

2.3 Jupyter Notebook

Jupyter Notebook is a Python programming environment that can be used
in a web browser. In Jupyter Notebook we can create and run Notebook
documents3, which may contain a mixture of Python program code and
information (not program code). Notebook documents can be used locally
on the user’s PC or over the Internet. Jyputer Notebook runs Notebook
documents using. a built-in program called kernel . We will see how we
can create Notebook documents running Python, but there is support for
other languages as well, e.g. R which is widely used in statistics.

In this chapter we will only look at the very basic use of the Jupyter
Notebook.

2.3.1 How to start Jupyter Notebook

We can start Jupyter Notebook in two ways:

• Via the Jupyter Notebook button in Anaconda Navigator, see Figure
2.2.

• Via the Jupyter Notebook button under Anaconda on the PC’s start
menu, see Figure 2.1.

3We can simply refer to Jupyter Notebook documents as Notebook documents.

30

2.3. JUPYTER NOTEBOOK

You can also make Jupyter Notebook accessible via a button on your
PC’s taskbar: Right-click the Jupyter Notebook icon in the Start
menu / More / Attach to the taskbar.

When Jupyter Notebook is started, Jupyter Notebook’s dashboard appears
in a tab of the browser, see Figure 2.11.

Figure 2.11: The Jupyter Notebook Dashboard in a browser tab

The dashboard has three tabs:

• Files, which works like Window Explorer on a Windows PC.

• Running , which displays Notebook documents that are being
processed, i.e. running on the current kernel (Python, R, or another).
From here you can stop any (Python) processes running.

• Clusters, which applies to the use of parallel processing
(simultaneous processing) on multiple cores with a tool called
IPython Parallel, but we will not go into this.

2.3.2 How to create and edit Notebook documents

To create a new Jupyter Notebook document, click the New button on the
dashboard, cf. Figure 2.11, and choose the current kernel, which for our
use is Python 3 (by the way the only kernel available here). This opens a
new Notebook document in a new tab in the browser to the right of the
dashboard tab. The notebook is initially given a default name, here
Untitled, but you can change this by clicking on the name field or via the
File / Rename menu option.

Figure 2.12 Notebook document after renaming hello world 05 08 v01.

31

2.3. JUPYTER NOTEBOOK

The address in the browser’s address bar is:

localhost:8888/notebooks/hello world 05 08 v01.ipynb

Some comments on this address:

• localhost indicates that Jupyter Notebook is running on a local
kernel, ie on the user’s PC.

• Notebook document file extension, ie the part of the file name that
indicates the file type is ipynb (= interactive python notebook).
However, the file extension does not appear in the title field of the
Notebook document itself, which is to the right of the Jupyter icon.

Figure 2.12: Notebook document hello world 05 08 v01.ipynb (currently
free of content) displayed in Notebook tab in browser

We will now edit the Notebook document by typing into cells in the
document:

1. Click in the currently only cell and make the following menu choices:
Cell / Cell Type / Markdown, which means that the text we are
going to write in this cell is informative text, ie not program code.
Note that the characters In []: now no longer appear to the left of the
cell.

2. Type the following text in the cell: My first Notebook document:
Hello World.

3. Create a new cell during the first one by clicking the + button
(Insert Cell Below button) or with the following menu items: Insert /
Insert Cell Below.

32

2.3. JUPYTER NOTEBOOK

4. Click in the newly created cell and make the following menu choices:
Cell / Cell Type / Code, which means that the text we are going to
write in this cell is program code, ie not informative text. The
characters In []: are now displayed to the left of the cell.

5. Enter the following text in the newly created cell: print (’Hello
World’).

6. Save the Notebook document with the Save button (Save and
Checkpoint button) or via the menu option File / Save and
Checkpoint. Checkpoint represents the latest version of the document
that we saved manually. Checkpoint neglects file versions that were
saved with auto-save. You can get the Checkpoint version of the file
back with the File / Revert to Checkpoint menu option. Figure 2.13
displays the Notebook document as it has now, ready to run.

Figure 2.13: Notebook document ready to run

2.3.3 How to run Notebook documents

We can run the Notebook document shown in Figure 2.13 by clicking the
Run button or by making the Run / Run All menu selection. Figure 2.14.
shows the result of the run.

33

2.3. JUPYTER NOTEBOOK

Figure 2.14: The result of the Notebook document running

Once we have started running a Notebook document, the process will
continue to run - until we manually stop it, which is done as follows:

1. Open the Dashboard (tab to the left of the Notebook document tab)
in the browser.

2. Open the Running tab.

3. Click the Shutdown button, see Figure 2.15.

Figure 2.15: The dashboard that displays the Notebook document
hello world 05 08 v01.ipynb, which is running.

2.3.4 How to Save Notebook Documents

Notebook documents can be stored - or "downloaded" (download) from the
server running the Python process - in a variety of alternative file formats.
This is done via the menu option File / Download As ..., see Figure 2.16.

34

2.3. JUPYTER NOTEBOOK

Figure 2.16: Notebook documents can be saved - or "downloaded" (in a
variety of alternative file formats).

2.3.5 Help in Jupyter Notebook

There is help getting in the Jupyter Notebook:

• Help find a suitable way to perform a programming task .
The possibilities for such assistance are the same as for Spyder, cf.
2.2.4 (they are not repeated here). There is also a rich Help menu in
the Jupyter Notebook, see Figure 2.17.

• Help find syntax errors2.2.4 in your program code , as
illustrated in Figure 2.17 where the syntax error in prnt ("Hello
World") is detected.

35

2.4. VISUAL STUDIO CODE

Detektering av
syntaksfeil

Hjelp-menyen

Figure 2.17: Different types of help in Jupyter Notebook: Programming
Help (Guide) under the Help menu and Detecting Syntax Errors

2.4 Visual Studio Code

2.4.1 How to install and launch Visual Studio Code

Visual Studio Code or just VS Code (Microsoft) is a freely available
programming environment with support for a variety of programming
languages, including Python. VS Code can be downloaded from
https://code.visualstudio.com, but is also included with the Anaconda
distribution and is then available via a separate button in Anaconda
Navigator, see Figure 2.2.

If you have installed the Anaconda distribution, VS Code is also available
through the PC Start menu. I recommend starting VS Code via Anaconda
Navigator because all Python packages that come with the Anaconda
distribution will then be available in Python via the import command
executed in the VS Code terminal (see below) or in your Python script.

Figure 2.18 shows the VS Code startup window. (The window may look a
little different on your PC.)

36

2.4. VISUAL STUDIO CODE

Figure 2.18: Startup window in VS Code

You may disagree, but I think it’s a bit dull with such a dark programming
environment. I prefer more light and therefore make this menu selection:

File / Preferences / Color Theme / Light (Visual Studio)

Figure 2.19 shows again the startup window in VS Code, now with the
Light color them.

Figure 2.19: The VS Code startup window after the File / Preferences /
Color Theme / Light (Visual Studio) menu option

2.4.2 Connect Python to VS Code

VS Code can be used to program and run programs in a variety of
languages. We will now connect Python to VS Code so that we can run

37

2.4. VISUAL STUDIO CODE

Python programs from VS Code:

1. Select the View Extensions menu option (or click the Extensions
button in the button bar shown on the left of Figure 2.19), which
automatically opens and selects Anaconda Extensions and Python
and YAML.4 Python is now entered in the status bar at the bottom
of the VS Code window, see Figure.

Figure 2.20: The View Extensions menu option opens and selects Anaconda
Extensions and Python and YAML. (We keep the choices.)

2.4.3 Open (create) workspace

We are going to create a simple Python program, which we will store in a
folder that belongs to a workspace. Various settings of VS Code are stored
in the current workspace.

We start by opening a new workspace with the menu selection

File / Save Workspace As

This opens a file explorer window called Save Workspace. In this window,
create or select an existing folder. Then create a workspace associated with
this folder by entering a self-selected Workspace name (I chose the name

4YAML = YAML Ain’t Markup Language, which is a recursive name definition that
can be difficult to understand :-) YAML is used to create configuration files of various
types.

38

2.4. VISUAL STUDIO CODE

vs workspace finnh) and clicking the Save button. Figure 2.21 shows a
section of the VS Code window where the newly created workspace is
displayed under the Explorer view. (You can access the Explorer view
using the View / Explorer menu option or by clicking the Explorer button
in the upper left of the VS Code window.)

Figure 2.21: VS Code window where the newly created workspace
(vs workspace finnh) is displayed under the Explorer view

2.4.4 How to create and run a Python program

We can create a Python program as follows, cf. Figure 2.21:

1. Make the menu view View / Explorer.

2. Right-click on the folder name (vscode finnh) that is listed under the
workspace name (vs workspace finnh).

3. Velg New File i menyen som åpnes.

4. Enter a file name. I have chosen prog hello world.py.

5. Run the program by right-clicking somewhere in the editor window
of the current Python program and selecting Run Python File in
Terminal. (Alternatively, you can right-click the current Python
program in the Explorer window to the left of the editor window.)
Figure 2.22 shows the result of the run.

39

2.5. THE PYTHON COMMAND LINE IN THE ANACONDA
COMMAND WINDOW

Figure 2.22: The result of running the Python program prog hello world.py
via the menu item Run Python File in Terminal.

2.5 The Python command line in the Anaconda
command window

Figure 2.23 displays the Anaconda command window, which can be
accessed via the Anaconda menu on the PC start menu.

Figure 2.23: The Anaconda command window

We can open the Python command line by typing python (and ending with
the Enter key). We can then write the program code on the command line
and execute the code by pressing the Enter key on the keyboard.

40

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

Figure 2.24 shows the result of executing the program code print (’Hello
World’) on the Python command line in the Anaconda command window.

Figure 2.24: The result of executing the program code print (’Hello World’)
on the Python command line in the Anaconda command window.

Generally, it is more appropriate to use Spyder or Jupyter Notebook than
the Python command line as a programming environment. But even if we
do not use the Anaconda command window for programming itself, we can
greatly benefit from the Anaconda command window for eg. to manage
so-called packages of Python functions. By package management is meant
listing of already installed packages (on your PC), searching for packages
that are not yet installed, and installing packages. We will discuss this in
more detail in Chap. 2.6.

2.6 Import and use of Python packages and
modules

2.6.1 Packages management with conda or pip

Packages

functions that we can use in our Python programs, e.g. print(), sqrt(),
sum(), etc., are aggregated into packages for special purposes. Here are a
few examples of such packages:

• numpy, which contains elementary mathematical functions

41

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

• matplotlib, which contains data plotting functions

• scipy, which contains advanced mathematical functions for eg.
optimization and signal processing, etc.

• pygame, which contains functions for programming animations

The packages come in different shapes:

• One package, which we can call the standard package, is
automatically installed when the Anaconda deployment is installed,
and the functions there are immediately available for use in the
programs we create.

• Many packages are installed automatically when the Anaconda
distribution is installed. We must also import them to Python in
order to use them.

• And there are many packages "out there" that are not included with
the Anaconda distribution. If we need functions in some such
packages, we must install them ourselves and then import them into
Python.

Package Management

There are tools available for package management or package management.
Such package management can be listing, installation, uninstalling
packages, etc. Once we install the Anaconda distribution, we have two
package management tools available:

• conda , which is an Anaconda product.

• pip , which is quite similar to conda, but is a tool developed by
PyPA - The Python Packaging Authority - which is a working group
that develops and maintains tools for Python packages. Also pip is
part of the Anaconda distribution.5

5

– Pip is supposedly an abbreviation for “pip installs packages”, ie Pip is a so-called re-
cursive acronym (abbreviation). This is not a particularly clear definition, I think :-)
Alternatively, we can consider pip as an abbreviation for “Python installation pack-
age” or “package management system used to install and manage software packages
written in Python” (Wikipedia).

42

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

Both conda and pip can be used in Anaconda command window, cfr.
Ch.2.5. They can also be used from the command line in Spyder, but I
would not recommend this as there is sometimes little or no running
information displayed in Spyder while pip or conda is running (eg
installing or uninstalling a package), and I have also experienced that
commands seemingly hanging. The Anaconda command window is better
in that way, but should we use conda or pip there? My experience is that
conda has not always succeeded with the job, while pip always worked.
Then I land on: pip in the Anaconda window.

Figure 2.25 displays some basic pip commands. (On the Anaconda
command line, we do not need to type the § character.)

Figure 2.25: Some basic pip commands.
(Https://pip.pypa.io/en/stable/quickstart/)

We will use pip commands in some of the following sections.

2.6.2 Built-in functions in Python (standard package)

Python is said to come with battery included, which means that in Python
there is a collection of built-in functions that you can use in your

43

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

programs. We can consider this collection of built-in functions as Python’s
standard package of functions. An overview of the built-in functions in
Python version 3.7.3 is available at
https://docs.python.org/3/library/functions.html, see Figure 2.26. We see
that the well-known print() function is in the standard package.

Figure 2.26: Pythons standard package of built-in functions (Python version
3.7.3)

2.6.3 Import of packages included with the Anaconda
distribution

When we install the Anaconda distribution, a large number of function
packages are automatically installed on your PC. These packages are
(automatically) installed in addition to the standard package discussed in
Chap. 2.6.2.

Figure 2.27 shows an excerpt of an overview of the 601 packages available
for Python version 3.7.3, Windows 64 bits. (Source:
https://docs.anaconda.com/anaconda/packages/py3.7 win-64/.) Of these
packages, slightly less than half (that is, a few hundred) of packages are
automatically installed when the Anaconda distribution is installed. The
packages that are installed are marked with a check mark in the overview.

44

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

Figure 2.27: Packages that are installed with the Anaconda distribution for
64-bit Windows are marked with a check mark.
(https://docs.anaconda.com/anaconda/packages/py3.7 win-64/)

List of packages installed on your PC

The pip command list can be used to list packages that are installed on the
PC. Figure 2.28 shows the result of the pip list command executed on the
Anaconda command line.

Figure 2.28: The result of the pip list command executed on the Anaconda
command line

45

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

To check if a specific package is installed and possibly get information
about the package, you can use the command show show. Figure 2.29
shows, for example, the result of the command pip show alabaster
(alabaster is at the top of the package overview shown in Figure 2.28).

Figure 2.29: The result of the pip command show affine after it is executed
on the Anaconda command line

How to import packages installed on your PC

Although a package is installed on the PC, the functions of the package are
not immediately available in the programs we create. They become
available by so-called importing that package. The usual way to import is
to use the import command in your Python script.

An example: Suppose we calculate the square root of a number
represented by the variable name x. The square root is represented by the
variable name y and must be calculated by the sqrt() function included in
the numpy package. The result (which is 1.5811388300841898) is displayed
in the console by typing y on the command line followed by the Enter key.
The code lines in the box below realize this (end each code line with the
Enter key).

>>> import numpy as np
>>> x = 2.5
>>> y = np.sqrt(x)
>>> y
1.5811388300841898

Comments on the program code above:

• The numpy package is imported into Python and in this context is
given the short name np (it is Python tradition to use the short
name np for numpy).

46

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

• The import command should be followed by two blank lines, cf. the
recommendation in PEP 8.

• The package name, here np, must be set as the prefix to the sqrt()
function, cf. the code np.sqrt (x).

• If we had imported numpy with the code import numpy, we should
have written numpy.sqrt (x) instead of np.sqrt (x). Actually, we can
choose whether or not to rename a package. import, but I think we
should follow name traditions in Python programming.

Although the main focus here is really the import of packages, it fits with
some comments that do not have to do with packages:

• x is a variable, given value 2.5. (We shall take a closer look at the
term variable in Chap. 3.3.)

• y is variable, which gets value equal to the square root of x.

How to import modules included in packages

In some cases, we need to import so-called modules which is included in
packages. A module is in principle a collection of functions. A package can
then contain a number of modules, which in turn consists of a number of
functions.

Although we will look more closely at the plotting of data in Chap. 4, here
it may be appropriate to use a concrete example of plotting to illustrate
the import of modules: We will import the pyplot module from the
matlplotlib package and use the plot (plot) function included in the pyplot
module to plot data. The code lines in the box below do this.

>>> import matplotlib.pyplot as plt
>>> x = [0, 1, 2]
>>> y = [0, 10, 20]
>>> plt.plot(x,y,’-o’)
>>> plt.xlabel(’x’)
>>> plt.ylabel(’y’)
>>> plt.grid(which=’both’,color=’grey’)
>>> plt.show()

Comments on the code above:

• The code line import matplotlib.pyplot as plt imports the pyplot

47

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

module into the matplotlib library and renames pyplot to plt in that
regard (it is Python tradition to use the short name plt for pyplot).

• The code lines x = [0, 1, 2] and y = [0, 10, 20] define the lists x
respectively y.

• The pyplot function calls plt.plot (x, y, ’- o’) generate the plot itself.
Note that plt is in front of the plot() function. The code states:

– y is plotted vs. x

– Each data point, ie each (x, y) point is marked with a circle.

– A straight line is drawn between the data points.

• The pyplot function calls plt.xlabel (’x’) and plt.ylabel (’y’) specify
mark text along the axes.

• The pyplot function call plt.grid (which = ’both’, color = ’gray’)
generates grids in the plot.

• The Pyplot function call plt.show() ensures that the plot is
displayed. (In Spyder, this function shell can actually be dropped.
The plot is displayed anyway.)

Figure 2.30 shows the plot.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

Figure 2.30: Plot of data with plot() function of the plt module (pyplot
module) in the matplotlib package

48

2.6. IMPORT AND USE OF PYTHON PACKAGES AND MODULES

2.6.4 Installation and import of packages not included with
the Anaconda distribution

If you know the name of a Python package you need, and that package
does not come with the Anaconda distribution, you can install the package
with the pip install command, see Figure 2.25. Once you have installed the
package, you can import it with the import command, cf. 2.6.3.

As an example, let’s install affine (although we actually don’t need it now).
Figure 2.31 shows the result of the pip install command executed in the
Anaconda command window.

Figure 2.31: The result of the pip install command executed in the Anaconda
command window

49

Chapter 3

Variables and data types

3.1 Introduction

You have to understand what variables and data types are, in order to
program. Of course, programming requires knowledge of many other
things as well, but variables and data types are fundamental concepts.
This chapter provides sufficient knowledge of variables and data types.

3.2 How to run the code samples?

The chapter, and the rest of the book, contains many examples of program
code that you can / should run yourself. The code examples are set in
frames. In general, you can choose whether to run the commands from the
command line in e.g. Spyder or via a script that you create. Small
examples, which I suppose can be tested on the command line (without
creating scripts), I type after the so-called Python prompt (or the Phyton
command sign) >>>.

In the programming environments Jupyter Notebook and Spyder are
prompted

In [n]

(there is a running command number) instead

>>>

50

3.3. VARIABLES

If you use one of these programming environments, you enter the code
after the In [n] prompt.

After you enter the code on the command line, run the code by pressing
the Enter key on the keyboard.

3.3 Variables

3.3.1 What is a variable?

A variable is a data element with a name. We can create or define a
variable and assign it a value by using equals. If the number value has a
unit, you must keep track of the unit yourself.

Example: We define the variable m (for “mass”) and assign the number
value 10.2, which we assume has unit kg. We can then write the following
in the current script or on the console command line:

>>> m = 10.2 # kg

Comments:

• In Python we must use decimal point, not decimal comma.

• We can specify the unit of value as text after the # sign, which
indicates line comments. All characters after this character are
interpreted by Python as a comment and neglected as program code.

• After the code is executed, the variable m exists in Python’s
workspace (workspace), as shown in the Variable explorer in the
Spyder Help window, see Figure 3.1.

• We can delete the variable m with the command del m. We can
delete all the variables in the work area with the eraser button in the
console or in the Variable explorer, see Figure 3.1.

51

3.3. VARIABLES

Figure 3.1: After executing the code, the variable m exists in Python’s
workspace, as shown in the Variable explorer in the Spyder help window.

The built-in variable (underscore) has value from the last
calculation

For example, suppose you performed the 1 + 2 calculation on the Python
command line (in the console). The value of the calculation is 3. Python
has a built-in variable named , which we can call the underscore variable.
The underscore variable gets a value here of 3. You can then use the
underscore variable, which has a value of 3 here, in the subsequent
calculation. Figure 3.2 illustrates the use of the underscore variable.

Figure 3.2: The built-in underscore variable has value equal to the result of
the last calculation.

3.3.2 Why use variables when you can always use values?

Stating the conclusion right away: It is wise to use variables in programs!
For example, suppose we have a program where the constant (constant)
value is 1.23 is included in 10 places in the program. Two alternative ways
to use this value in the program are:

52

3.3. VARIABLES

1. We can write the value 1.23 at all 10 places in the program.

2. We can define a variable let’s say with name a and assign that value
1.23 one place in the program, ie we write the code a = 1.23, we also
use a at all 10 places in the program.

It is almost as easy to write a as 1.23, so then it doesn’t matter which of
the two options we choose? Assume that, for some reason, the value is
changes to 2.46. With method 1 we must make 10 changes in the program,
while with method 2 we can do with only 1 change, namely a = 2.46! This
is illustrated in Figure 3.3.

Another benefit of using variables instead of just values is that the program
code becomes easier to maintain, ie that we are less likely to create the
wrong code. In addition, the program code becomes easier to read.

Figure 3.3: It is much better to use variables than values in the program
code. (The lines represent program code here.)

3.3.3 How to choose variable name

There are actually only a few absolute rules for variable names. Below are
some absolute rules and some recommendations.

• We should not use the characters l (lowercase l), o (lowercase o), O
(capital o), I (capital i) alone or first in the name of variables or
functions because these characters can so easily be misunderstood.

• It is ok to use both lowercase and capital letters, e.g. m or M for
mass, but remember that m and M are different names.

53

3.4. A LITTLE ABOUT FUNCTIONS

• In names or parts of multi-letter names, lowercase letters should be
used, e.g. mass, not MASS, nor Mass.

• The names may consist of a combination of letters and numbers, but
not special characters such as. %, (, + and], etc., but underline, , is
ok. Numbers should not be first characters in a name. Examples:

– 3 usable names: mass bil 1, m bil 1, M bil 1

– 2 illegal names: 1 car mass,% rate

• Names of built-in functions in Python should not be used as names
of variables because the built-in function then loses its original
meaning. Example: If you, unfortunately, have given a variable the
name “print”, then the built-in function print() loses its original
meaning. An unfortunate name selection can be reversed by deleting
the variable with the del print command, and then, the print()
function is again available as normal.

3.4 A little about functions

In mathematics, variables and functions (or formulas) are fundamental
concepts. Just think of square root calculation:

y =
√
x

there

• x is the function’s input or input argument,

• y is the output or output argument of the function

• √ (square root calculation) is the function.

Figure 3.4 illustrates this function.

Figure 3.4: Mathematical function (square root calculation)

54

3.4. A LITTLE ABOUT FUNCTIONS

Similarly, it is in programming : Variable and Functions are fundamental
concepts. This chapter focuses on variables and the various data types that
variables can have (such as integers, floating numbers, text, etc.). However,
since variables and functions often appear together, it is reasonable to
introduce the concept of functions and some different forms of functions
here. However, functions are treated in much more detail in Chapter 5.

A function “does something” with the input, or input argument, to the
function. The result of what the function does is called the function
output, or output argument or return argument. Figure3.5 illustrates the
concept of functions in Python.

Figure 3.5: Function with input argument and output argument, or return
argument

Functions come in different forms:

• Function

• Method

You will become more familiar with these forms through some simple
examples.

Function

The built-in numpy package contains the sqrt() function for calculating
square root. It is used as follows:

>>> import numpy as np
>>> x = 2.0
>>> y = np.sqrt(x)
>>> y
1.4142135623730951

55

3.5. NUMBERS AND BASIC MATHEMATICAL OPERATIONS

The first line of code causes the numpy package to be imported into
Python and renamed in that connection to np (which is a python
tradition). Python also has some functions that come with its standard
package. They can be used directly, without importing any package, cf.
2.6.2.

Method

Simply put, all variables in Python are so-called objects. And with the
objects, there are a number of so-called methods, which are functions that
"belong" to the object and operate on it. The syntax is

objekt.metode()

In the example below, we first create a variable named L of data type list,
that consists of the two numbers 0 and 1 (we will learn more about lists in
Ch. 3.9). Then we expand the list with an element of value 2 using the
append() method which can be applied to list objects. We see that the
append() method basically works as a function.

>>> L = [0, 1]
>>> L.append(5)
>>> L
[0, 1, 5]

Above I wrote L (+ enter) on the command line to display the value of L. I
could also have used the print() function:

>>> L = [0, 1]
>>> L.append(5)
>>> print(L)
[0, 1, 5]

3.5 Numbers and basic mathematical operations

Here we will look at different ways of representing numbers and basic
mathematical operations. More advanced calculations, and the special but
very effective calculation method called vectorized calculation, are
described in Ch. 3.12.7.

56

3.5. NUMBERS AND BASIC MATHEMATICAL OPERATIONS

3.5.1 Numbers types

In Python we can use different types of numbers:

• Integer .
Example: 2
Example: −10

• Floating point , or decimal number. In Python, dots, not commas,
are used as decimal separators.
Example: 1.23

• Complex numbers. The symbol j is used as a complex unit.
Example: 1 + 1j (just 1 + j will give an error message).

Numbers can be expressed with powers of 10 as follows:

• Example: 1.234e2 that is the number 1.234 · 102 = 123.4. The letter
e stands for 10’s exponent.

• Example: 1.234e−2 that is the number 0.01234.

3.5.2 How to format numbers in print() function

The print() function is probably the most frequently used function in
Python. It is one of Python’s built-in functions, cf. Figure 2.26. We have
used this function many times already. When we use it to print numbers,
the numbers are displayed by default with a large number of digits (14)
after the decimal point. Often we want fewer digits, and we can obtain this
by specifying the format (number) to print.

There are several ways to format the arguments of the print() function.
The program (script) below demonstrates the most relevant ways. The
program prints text, and numbers mixed with the text. Comments on the
individual code lines and their results are given below.

Program name: prog print format.py.

57

3.5. NUMBERS AND BASIC MATHEMATICAL OPERATIONS

x1 = x2 = x3 = x4 = x5 = x6 = x7 = 200/3
y2 = y4 = y6 = 100/3

print(’x1 =’, x1)
print(’x2 =’, x2, ’and y2 =’, y2)
print(’x3 =’, f’{x3:.3f}’)
print(’x4 =’, f’{x4:.3f}’, ’ and y4 =’, f’{y4:.1f}’)
print(’x5 = %.3f’ % x5)
print(’x6 = %.3f and y6 = %.1f’ % (x6, y6))
print(’x7 =’, f’{x7:.2e}’)

Here is the result of running the above code lines as shown in the console:

x1 = 66.66666666666667
x2 = 66.66666666666667 and y2 = 33.333333333333336
x3 = 66.667
x4 = 66.667 and y4 = 33.3
x5 = 66.667
x6 = 66.667 and y6 = 33.3
x7 = 6.67e+01

Comments on the individual code lines and their results:

• print(’x1 =’, x1):
No special formatting is used here, and x1 is displayed with a full 14
digits after decimal point!

• print(’x2 =’, x2, and y2 =’, y2):
Here, two numeric values are printed in the text – without any
special formatting of the numbers. There will be lots of digits all in
all. (Seems like there is a numerical inaccuracy in the last digit, by
the way.)

• print(’x3 =’, f’{x3:.3f}’):
Note the letter f in front of the formatting text string, {x3:.3f}. f
stands for “formatted string literal” or “f-string”.
The term {x3: .3f} means that the value of x3 should be written as
floating point with 3 digits after decimal point. Note the colon!
I like f-string formatting, because the numbers are in their natural
place within the text string to be printed.

• print(’x4 =’, f’{x4:.3f}’, ’ and y4 =’, f’{y4:.1f}’):
Same as in the above paragraph, but now two numbers are printed
with each f-string formatting.

• print(’x5 = %.3f’ % x5):

58

3.5. NUMBERS AND BASIC MATHEMATICAL OPERATIONS

Note where the% sign is.
This is a traditional way to format the print. On python.org1 it is
referred to as “old-string formatting”, and it is stated that there may
be certain technical problems with this formatting. Of course, it is
used in many applications.
I think it is natural that we drop using this formatting method, but
it is useful to know about it because it is probably used in existing
code.

• print(’x6 = %.3f and y6 = %.1f’ % (x6, y6)):
Same as the point above, but now two number values are printed.
(x6, y6) is a tuple. The order of the elements in the tuple corresponds
to the order of formatting in the text string to be printed.

• print(’x7 =’, f’{x7:.2e}’):
This is f-string formatted printing, as for x3 above. The formatting
character e, which stands for “exponential,” indicates that the
number is printed in 10s exponential form. The number 2 in front of
e indicates that it must be 2 digits after the decimal point. Printing
6.67e+01 means 6.67·101.

I admit there are many details in the above, but I would say it’s worth the
effort since we – and others – use the print() function often.

I would like to repeat the request from python.org to Python programmers
to use print with f-string formatting in the print() function, as for x3 and
x4 and y4 above.

3.5.3 Mathematical operators

The basic mathematical operators are:

+ (addition)

− (subtraction)

* (multiplication)

/ (division)

** (power), e.g. 2**0.5 (= 20,5 =
√

2)

1https://docs.python.org/3/library/stdtypes.html#old-string-formatting

59

3.5. NUMBERS AND BASIC MATHEMATICAL OPERATIONS

Example 3.1 Basic mathematical operations

The following commands written on the command line demonstrate basic
mathematical operations (the results are also shown):

>>> 2 + 5.1
7.1
>>> 2 - 5.1
-3.1
>>> 1.2*1.5
1.7999999999999998
>>> 1.2/1.5
0.7999999999999999
>>> 2**0.5
1.4142135623730951

[End of Example 3.1]

The relative precedence of the operator

The operators have relative precedence or rank as follows:

1. **
Example:

>>> 2**3 + 4
12
>>> 2**(3+4)
128

2. * and / (ie equal precedence, and the calculation is done from left to
right).
Example:

>>> 8/4*2
4.0

3. +and - (ie equal precedence, and the calculation is done from left to
right).
Example:
>>> 3 + 2 −2
3

Note: In a series of ** operators, the calculation is performed - from
normal - from right to left.

60

3.6. TEXT STRINGS (STRINGS)

With parentheses, you remove any doubts about the precedence of the
operators. Recommended!

Example:

>>> 2**3**2
518
>>> 2**(3**2)
518

3.6 Text strings (strings)

In addition to numbers, Python can handle data in the form of text strings
(pythonsk: strings), eg. ’Donald’. Alternatively, double quotes can be
used: ’Donald’ and “Donald” are thus equivalent. (Simple quotes are used
in this book.)

Some things to note:

• Numbers are ok, e.g. ’1’ and ’0.23’.

• Native character, like Norwegian characters, are ok, ie ’Æ’, ’Ø’, ’Å’,
’æ’, ’ø’, ’̊a’.

• Special characters ok, e.g. "&" and "%".

• The character sequence \’ is used to represent apostrophe as a
character.

• The character sequence \n means new line.

• The + operator can be used to put together, or concatenate), text.

Example 3.2 Text strings and operations on such

The following examples use the print() function to display the text strings
in the console.

>>> print(’1’+’2’)
12

>>> print(’I don\’t know.’)
I don’t know.

61

3.7. FROM NUMBERS TO TEXT AND FROM TEXT TO NUMBERS

>>> print(’Line 1.\nLine 2.’)
Line 1.
Line 2.

[End of Example 3.2]

3.7 From numbers to text and from text to
numbers

A short rehearsal: Three basic data types in Python are

• float (floating point), e.g. 59.82

• int (integer), e.g. 2

• str (text string), e.g. ’59.8’

Python requires that you use the correct data type in current program
expressions. It may therefore be necessary to convert mbetween some of
the data types. Python has built-in functions that perform type conversion
(pythonsk: datatype casting), cf. Figure 2.26:

• float() converts from str or int to float.

• int() converts from str or float to int with any rounding against null.3

• str() convert from float or int to str.

Example 3.3 Conversion from float to str

>>> vekt float = 59.8 # Flyttall
>>> info = ’Hun veier ’ + str(vekt float) + ’ kg.’
>>> info
Hun veier 59.8 kg.

The code above uses the + operator to merge text strings.

2

– I Python brukes desimalpunktum, ikke desimalkomma.

3numpy.ceil() rounds up to the nearest integer.

62

3.7. FROM NUMBERS TO TEXT AND FROM TEXT TO NUMBERS

If we slurp by dropping the type conversion for the variable weight from
float to size, Python gives clear message:

>>> vekt float = 59.8
>>> info = ’Hun veier ’ + vekt float + ’ kg.’
TypeError: can only concatenate str (not "float") to str

[End of Example 3.3]

Then we have an example of the opposite conversion:

Example 3.4 Conversion from str to float

The float() function is used here to convert text string to float number in
preparation for a mathematical operation, namely multiplication:

>>> vekt str = ’59.8’ # Tekststreng
>>> vekt i gram float = float(vekt str)*1000
>>> vekt i gram float
59800.0

[End of Example 3.4]

Fortunately, the print() function is quite flexible

In the examples above, we had to convert between floating point and text
string and vice versa. But it can be useful to keep in mind that the print()
function itself is quite flexible since it can print (present in the console) a
mix of text and numbers.

Example 3.5 The print() function accepts a mix of different data types

print() function prints both text and numbers:

>>> weight float = 59.8 # Flyttall
>>> print(’She would like to weigh’, weight float, ’kg.’)
She would like to weigh 59.8 kg.

[End of Example 3.5]

Type conversion regarding the input() function

Suppose you have created a program where the floating point variable x is
to be included in a calculation. Of course, you can assign x a value in the

63

3.7. FROM NUMBERS TO TEXT AND FROM TEXT TO NUMBERS

program code itself. Alternatively, the user can enter a value in the console
while the program is running using the input() function, which is a built-in
function in Python, see Figure 2.26. The input() function returns text. If x
is to have data type floating point, we need to converte the type from text
to number. This is demonstrated in the following example.

Example 3.6 Type conversion ifm. input() - function

The program in the box below uses the input() function to ask the user to
enter a number on the command line in the console. The input() function
considers this number as text. It is therefore necessary to convert the text
to an actual number (data type float), and we do so with the float()
function.

x = float(input(Enter the number, x: ’))
y = x + 3.4
print(’y =’, y)

When the above program is run, the program pauses while the text ’Enter
the number x:’ appears on the command line. When the user (I) has
entered a "number" (actual text) – and I entered “1.2”, the program
proceeds with code succeding the input() code, which here is the addition
y = x + 2.3, which gives the result 4.6. The box below shows the
information that is presented in the console.

Enter the number x: 1.2
y = 4.6

If I had dropped the type conversion with the float() function, like this:

x = input(’Enter the number x: ’)
y = x + 3.4
print(’y =’, y)

then, Python would react negatively and give an error message:

...
y = x + 3.4

TypeError: can only concatenate str (not "float") to str

[End of Example 3.6]

64

3.8. BOOLEAN VARIABLES, LOGICAL OPERATORS AND
COMPARISON OPERATORS

3.8 Boolean variables, logical operators and
comparison operators

Programming is often about logical operations. This section introduces the
basics about programming logical operations in Python.

3.8.1 Introduction

Suppose that you have created a program that contains two alternative
program parts, program part 1 and program part 2. Suppose that program
part 1 is to be executed if the floating point variable A is larger than the
floating point variable B, otherwise program part 2 will be executed. in
Figure 3.6. The program flow is thus determined by the comparison
between A and B. More specifically: It is the result of the comparison

A > B

that determines the program flow. This comparison gives results either
logically true or logically false, or in Python: True or False, as the two
possible logical values in Python.

Figure 3.6: Program flowchart expressing that program flow is determined
by the logical value of equation A > B.

The content of the diamond square, ie the test A> B?, can be realized
with a so-called if expression. We will get closer to the if-expression in
Section 7, but let us indulge in a little taste of how this can be expressed
with Python code:

65

3.8. BOOLEAN VARIABLES, LOGICAL OPERATORS AND
COMPARISON OPERATORS

if A > B:
Program code 1

else:
Program code 2

Above we have become familiar with some terms that we will look at in
the sections that follow:

• Logical values

• Comparisons

3.8.2 Boolean variable

Boolean or logical variables are variables that can have only one of two
possible values:

• True

• False

Note: In contexts other than Python programming, e.g. in other
programming languages, True and False may have other names:

• True can be named as "on"or "high" or "1" (logical one).

• False can be named as "off" or "low" or "0" (logical zero).

Boolean variables are useful for comparisons, etc.

3.8.3 Logical operators

In Python there are three logical operators which you can apply to
Boolean variables:

• and

• or

• not

66

3.8. BOOLEAN VARIABLES, LOGICAL OPERATORS AND
COMPARISON OPERATORS

The significance of these logical operators can be represented in so-called
truth tables , see the Tables 3.1 (for the and operator), 3.2 (or) og 3.3
(not).

A B A and B

True True True

True False False

False True False

False False False

Table 3.1: Truth table for the and operator

A B A or B

True True True

True False True

False True True

False False False

Table 3.2: Truth table for the or operator

A not A

True False

False True

Table 3.3: Truth table for the not operator

Example 3.7 Logical operators

Code lines below demonstrates the logical operators and, or, not and how
they can be combined into a composite logical operation.

Note that we can assign the value of a logical operation to a variable, which
then gets a boolean value according to it according to the logical operation.

67

3.8. BOOLEAN VARIABLES, LOGICAL OPERATORS AND
COMPARISON OPERATORS

>>> A = True
>>> B = False
>>> C = A and B
>>> C
False
>>> A or B
True
>>> not A
False
>>> A and (not B) # Composite logical operation
True

[End of Example 3.7]

3.8.4 Comparison operators

Table 3.4 shows the most current comparison operators in Python.

Operator Navn

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

!= Unequal

Table 3.4: The most current comparison operators in Python

Note that the equality operator is ==. It is not =, which is the assignment
operator.

Here is an example that demonstrates the comparison operators.

Example 3.8 Logical operators

68

3.9. LISTS

>>> 1 < 2
True
>>> 1 <= 2
True
>>> 1 > 2
False
>>> 1 >= 2
False
>>> 1 == 2
False
>>> 1 != 2
True

[End of Example 3.8]

3.9 Lists

3.9.1 What are lists?

One of the data types in Python is the so-called list .

Here is an example of a list of 4 elements of floating point numbers (I have
chosen to give the list name L1 here):

>>> L1 = [0.1, 2.3, 4.5, 6.7]
>>> L1
[0.1, 2.3, 4.5, 6.7]

Note:

• The elements are separated by commas (with or without spaces after
the comma).

• The brackets are brackets (square brackets).

Each element has a so-called element index, which is an integer. The first
element always has index 0 (not 1)4. The 4 elements in L1 then have the
element indices 0, 1, 2 respectively. 3.

4In MATLAB, the first index of vectors or arrays, which in some ways are comparable
with lists in Python, is 1

69

3.9. LISTS

Figure 3.7 illustrates, based on the example above, the data type list.

Figure 3.7: Illustration of a list. Note that the first element has index 0.

List elements can have data type text strings. An example:

>>> L2 = [’zero’, ’one’, ’two’]

And here’s a list of mix drops - numbers, text and list:

>>> L3 = [0.1, ’one’, [1.0, ’two’]]

How long is the list?

The built-in Python function len(), cf. Figure 2.26, find the length of a
list. Example:

>>> L1 = [0.1, 2.3, 4.5, 6.7]
>>> n = len(L1)
>>> n
4

Sequences

Lists are sequences of data. There are other data types than lists that
consist of sequences of data, namely arrays and tuples, which are
mentioned in their respective sections. All of these data types fall under
the general Python terms sequences and iterables.

3.9.2 Operations on lists

3.9.2.1 Reading list elements

Reading one list element

Let’s assume we have a list named L (but we could of course have assumed

70

3.9. LISTS

another name). We can then assign a variable, here named E, the value of
the list element with index i with the code

E = L[i]

As mentioned earlier, the first element has index 0. But what is the index
of the last element? It is -1, which will apply to all lists. It sounds strange,
but Figure3.8 shows logic: We consider the list as a closed sequence of
elements! For a specific list of n elements, the last element index can
alternatively be specified as n− 1.

Figure 3.8: A list considered as a closed sequence of elements.

Example 3.9 Read one element in a list

Below are some examples of reading items in list L = [0.1, 2.3, 4.5, 6.7], as
we defined above and illustrated in Figure 3.7.

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L[0]
0.1
>>> L[2]
4.5
>>> L[3]
6.7
>>> L[-1]
6.7

[End of Example 3.9]

Read a series of list items

71

3.9. LISTS

To read item values in a list, we must access (or index or address) the
relevant elements by specifying their indexes. We use the operator: (colon)
to access a series of list items (python for serial accessing: slicing). The
term L [i: j] accesses the elements starting with the element i to – but not
with – element j. This is illustrated in the figure 3.9. In particular, we
note that element j in list L is not included in list extract L2, and therefore
this element is marked in gray. (The white elements are not included in
the list excerpt either.)

Figure 3.9: List extract L2 = L [i: j]. We especially notice that element j
in list L is not included in the list excerpt.

If the start index is 0, we can drop typing 0. For example, L [0: 2] is
equivalent to L [: 2].

Example 3.10 Read a series of items in a list

We are going to read the series of elements from index 0 to (but not with)
index 2 in list L as we defined above:

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L[0:2]
[0.1, 2.3]
>>> L[:2] # Ekvivalent med L[0:2]
[0.1, 2.3]

[End of Example 3.10]

If we are going to access the items from index i and "out list", ie even the
last item, we can write L [i:].

Example 3.11 Read a series of items through the last item in the list

Here we read the items from index 1 and out list:

72

3.9. LISTS

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L[1:]
[2.3, 4.5, 6.7]

[End of Example 3.11]

3.9.2.2 How to update list items with new values

The examples below demonstrate how we can update list items in an
existing list of new values. In this connection, the list elements are
accessed in the same way as when we read from a list, cf. 3.9.2.1.

Oppdatere ett element

Example 3.12 Update one item in a list

Below, item 2 of the original list L = [0.1, 2.3, 4.5, 6.7] is updated with the
new value -4.5 as follows:

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L[2] = -4.5
>>> L
[0.1, 2.3, -4.5, 6.7]

[End of Example 3.12]

Update a series of list items

When updating a series of list items from element i to - but not with -
element j, we access the relevant part of the list (to be updated) with the
code L [i: j].

Example 3.13 Update a series of items in a list

Returns list L = [0.1, 2.3, 4.5, 6.7]. We can update the series of elements 0,
1 and 2 with the values 0.5, 2.5 and respectively. 3.5 as shown in the box
below. Note: We access the current list items with the code L [0: 3], not L
[0: 2].

73

3.9. LISTS

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L[0:3] = [0.5, 2.5, 3.5]
>>> L
[0.5, 2.5, 3.5, 6.7]

[End of Example 3.13]

3.9.2.3 Expand lists with new items

We can extend an existing list with one or more new elements with the
extend() function or method for lists. Pythonically, extend() is a method
that belongs to lists considered as objects. (The concepts of object and
method are explained in Chap. 3.4.)

The extend() method syntax is

L original.extend(L extension)

where L original is the original list and L extension is the list with which
L original is expanded.

Example 3.14 List extension

Returns list L = [0.1, 2.3, 4.5, 6.7]. We can expand the list with a new
element with value 8.9 as follows:

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L.extend([8.9])
>>> L
[0.5, 2.5, 3.5, 6.7, 8.9]

Comment on the code above:

1. Python gives the error message ” float ’object is not iterable’ if we
drop the bracket around 8.9. This is because the extend() method
must be extended with a list. 8.9 is in this context is not a list -
therefore the error message. [8.9] is a list - therefore no error message.

We can also use the extend() method to extend by more than one element,
as long as these elements are in the form of a list. Here we extend the
original list with list [8.9, 10.0]:

74

3.9. LISTS

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L.extend([8.9, 10.0])
>>> L
[0.5, 2.5, 3.5, 6.7, 8.9, 10.0]

[End of Example 3.14]

What about the append() method?

Above we have used the extend() method. Alternatively, where we
extended L by one element, we could have used append() as follows:
L.append (8.9) - without parentheses, with the same result as with
L.extend ([8.9]).

Note: When expanding by more than one element, the append() method
produces a result that can be unexpected and possibly problematic. In the
example above, let’s use append() instead of extend():

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> L.append([8.9, 10.0])
>>> L
[0.1, 2.3, 4.5, 6.7, [8.9, 10.0]]
>>> len(L)
5

The result is thus a list (L) consisting of 4 floating numbers and a list of
two floating numbers. The number of items in L becomes 5, not 6 as
expected! Here there can be misunderstandings and possible mistakes. If
we had used extend(), the result would be a list of 6 floating numbers and
with length 6, as expected. Based on this, I would say that extend() is
much better than append() for list extension with more than one element.

How about one item list extension? We have already seen that it is hip to
happ if we do list extension with append() or extend() - the resulting list
will be the same. But maybe one of them is much faster to drive? I have
created a program where I have detected the time5 it takes to expand a list
of one item with each of the methods. The test shows that append() is
about 10% faster than extend(). That difference is not much to brag about!

Based on this, I would recommend the extend() method over the append()
method when listing extensions with both one and more elements.

5The program uses the time.time() method to calculate the time it takes to make one
million extensions. These repeated expansions take place in a so-called loop, which is the
theme elsewhere in the book.

75

3.9. LISTS

3.9.2.4 Remove list items

We can remove items from a list with the command del (abbreviation for
delete). We access the elements to be removed in the same way as when
reading list items, cf. 3.9.2.1. The syntax for removing an indexed item
from list L is

del L[i]

Syntax to remove items from index i to (but not with) index j from list L is

del L[i:j]

Example 3.15 Remove items from a list

Returns list L = [0.1, 2.3, 4.5, 6.7]. Let’s remove item 2 from the list:

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> del L[2]
>>> L
[0.1, 2.3, 6.7]

Let’s start again with list L = [0.1, 2.3, 4.5, 6.7] and remove the two
elements with indexes 1 and 1 respectively. 2 from the list:

>>> L = [0.1, 2.3, 4.5, 6.7]
>>> del L[1:3]
>>> L
[0.1, 6.7]

[End of Example 3.15]

3.9.2.5 List manipulation with + and *

Usually the + and * operators are used for mathematical operations. But
when these operators are used on lists, they do not work mathematically.
Instead, they are used to manipulate the list. So here we are in a
minefield: -o

If you want to use the + operator to add a number value to all the list
items and the * operator to multiply all the list items by a number value,

76

3.10. TUPLES

you must convert the list to array, and then use the operators on the array.
This is explained in Chap. 3.12.

The + operator used between two lists is used to merge (python:
concatenate) listae, as demonstrated here:

>>> L = [10, 20, 30]
>>> L1 = [40, 50, 60]
>>> L + L1
[10, 20, 30, 40, 50, 60]

The * operator applied to a list is used to create a new list consisting of a
sequence of the original list, e.g. 3 times the original list, as in the
following example:

>>> L = [10, 20, 30]
>>> L*3
[10, 20, 30, 10, 20, 30, 10, 20, 30]

3.10 Tuples

Tuples are used to group data elements of the same or different data types.
Tuples are very similar to lists. Two important differences are:

• The elements in tuples are gathered in regular parentheses, ie(),
while lists are gathered in square brackets, [].

• Tuples cannot be manipulated, ie they can be considered static lists.

When using tuples, they are often the starting arguments of functions you
create yourself:

(ut arg 1, ut arg 2) = en eller annen funksjon(inn arg)

where (ut arg 1, ut arg 2) is a tuple with two elements (Programming your
own functions is covered in Ch. 5.)

How to define tuples

Here is an example of defining a tuple, which consists of the floating point
number 1.0 and the text string ’a’:

77

3.10. TUPLES

>>> T = (1.0, ’a’)
>>> T
(1.0, ’a’)
>>> type(T)
tuple

It is not really necessary to use parentheses when defining tuples, but
Python nevertheless displays parentheses around. (I prefer to use
parentheses because I think the code then appears clearer.)

>>> T = 1.0, ’a’
>>> T
(1.0, ’a’)

As I said, you cannot change the value of one or more tuple elements (as
you can with lists), but you can (of course) give a tuple a new value and in
that way change its content. You can also extend a tuples with the +
operator:

>>> T1 = (1.0, ’a’)
>>> T2 = (2.0, ’b’)
>>> T = T1 + T2
>>> T
(1.0, ’a’, 2.0, ’b’)

How to unpack tuples

Reading the values of one or more tuple elements is called unpacking the
tuple. You can

• unpack the entire tuple in one operation (and you can choose to
include or not include the parenthesis() around the result of the
unpacking)

• access the individual elements with indexing, just as you do with
lists.

This is demonstrated in the example below.

78

3.11. DICTIONARY

>>> T = (1.0, ’a’)
>>> (num1, text1) = (1.0, ’a’) # Unpacking the whole tuple using paren-
theses
>>> num1
1.0
>>> text1
’a’
>>> num1, text1 = (1.0, ’a’) # Unpacking the whole tuple without using
parentheses
>>> num1
1.0
>>> text1
’a’
>>> text1 = T[1] # Unpacking of one of the elements
>>> text1
’a’

3.11 Dictionary

A dictionary is a collection of data elements that can have different data
types, and the data elements are indexed (accessed) with keys in the form
of text strings. A nice feature of dictionaries is that the keys (indexes) can
be made “readable” (such as “teams”’). Lists, cf. 3.9, also consists of a
collection of data elements, but in lists the indices are just integers.

Below you will see how to create a dictionary. Comments on the code:

• ’Team’ is key, and ’ManU’ is its value .

• ’Points’ is also key, and 100 is its value.

>>> D = {} # Creates an empty dictionary
>>> D[’Team’] = ’ManU’ # Adds an element to the dictionary
>>> D[’Points’] = 100 # Adds another element
>>> D
{’Team’: ’ManU’, ’Points’: 100} # In their dreams

You can read the value of a key as shown below:

>>> D[’Team’]
’ManU’
>>> D[’Points’]
100

79

3.12. ARRAYS

You can remove an element with the del command:

>>> del D[’Points’]
>>> D
{’Team’: ’ManU’}

3.12 Arrays

3.12.1 Introduction

Arrays are very similar to lists. Both consist of sequences of data, which
can be numbers or text. The big difference between them is that a sea of
mathematical functions is open to arrays of numbers, while there are
hardly any mathematical functions for lists. This means that you have to
represent the data in arrays if you are going to do calculations with the
data.

However, the starting point for an array may well be a list, in which case
you need to convert the list to an array. List-to-array conversion, and vice
versa, is described in Section 3.12.2.

Arrays is a data type that “belongs” to the numpy package. Therefore, to
create and operate on arrays, you must import the numpy library. It is
common python to rename numpy to np when importing:

import numpy as np

You perform the import either from the command line or by running a
script that contains this command.

In the upcoming sections, we will look at some common ways to create
arrays and some common operations and calculations on arrays.

Complete documentation on arrays is available at6

https://docs.scipy.org/doc/numpy/reference/arrayer.html

The code examples in this subchapter are

6Ihht. scipy.org is Scipy “... a collection of open source software for scientific computing
in Python”.

80

3.12. ARRAYS

import numpy as np

as the first command. You do not need to execute this command in each
instance if you are constantly in the programming environment (such as
spears), but if you exit and re-enter, you must execute the command.

3.12.2 How to convert lists to arrays and vice versa

3.12.2.1 Conversion from list to array

How do we convert a numeric list to an array? We can use the array()
function in the numpy package. Suppose the list has name L and the array
should have name A. We can then convert L to A with:

A = np.array(L)

Example 3.16 Conversion of a list to an array

The following code converts the list L = [0.1, 2.3, 4.5, 6.7] to an array here
called A:

>>> import numpy as np
>>> L = [0.1, 2.3, 4.5, 6.7]
>>> A = np.array(L)
>>> A
array([0.1, 2.3, 4.5, 6.7])

[End of Example 3.16]

Note: Even if we say that we convert a list to an array, the original list will
still exist after the conversion.

3.12.2.2 Conversion from array to list

If you need to convert an array, called A, to a list, called L, you can use
Python’s built-in list() function:

L = list(A)

81

3.12. ARRAYS

Example 3.17 Conversion of list to array

The following code converts the list L = [0.1, 2.3, 4.5, 6.7] to array A,
which is then converted to list L1:

>>> import numpy as np
>>> L = [0.1, 2.3, 4.5, 6.7]
>>> A = np.array(L)
>>> L2 = list(A)
>>> L2
[0.1, 2.3, 4.5, 6.7]

[End of Example 3.17]

3.12.3 Create arrays of special design

3.12.3.1 Arrays with equal element values

A weird array

An empty array:

>>> import numpy as np
>>> A = np.array([])
>>> A
array([], dtype=float64)

dtype = float64 expresses the data type, which is here set to float64
(floating point with represented 64 bits).

You can expand an empty array of new elements. However, it’s probably
rare that you need an empty array.

Array of only zeros

We can create an array of n elements that all have a value of 0, using the
zeros() function in numpy:

A = np.zeros([n])

Example:

82

3.12. ARRAYS

>>> import numpy as np
>>> A = np.zeros([3])
>>> A
array([0., 0., 0.])

Array of only ones

We can create an array of n items that all have value 1, using the the
ones() function:

A = np.ones([n])

Example:

>>> import numpy as np
>>> A = np.ones([3])
>>> A
array([1., 1., 1.])

Array with all elements having the same value

We can create an array of n elements that all have value k (whatever you
set it to) by starting with an array of only 0’s, which we then add k to:

A = np.zeros([n]) + k

The result is that k is added to each of the elements. (It may seem strange
that one can add one number, that is, a scalar, to an array of numbers, but
it is thus allowed.)

Alternatively, we can use the ones() function, which gives the same result:

A = k*np.ones([n])

Example:

>>> import numpy as np
>>> A = np.zeros([3]) + 5.2
>>> A
array([5.2, 5.2, 5.2])

Note that here the array differs from lists, since the + operator applied to
a list means to expand list, not elemental addition as for arrays. Check the
result of adding an element, here 5.2, to a list:

83

3.12. ARRAYS

>>> import numpy as np
>>> L = list(np.zeros([3])) + [5.2]
>>> L
[0.0, 0.0, 0.0, 5.2]

3.12.3.2 Array with fixed increment between elements

It is often necessary to create an array with fixed increment (distance)
between the element values, e.g. an array of times with fixed time steps
between times. The linspace() function in the numpy package can be done
as follows:

A = np.linspace(start, stopp, antall)

there

• start is a given start value, like are included in the array.

• stop is a given stop value, like are included in the array.

• number is the number of elements in the array.

• A is the resulting – or returned – array. (Of course, you can choose a
name other than A on the array.)

Example 3.18 Using np.linspace() to create an array of points of time

The code below creates an array of points of time, from (included) the
start time t start = 0 s to (included) the end time t stop = 1.0 s, with
time step Ts = 0.1 s between each point of time.

>>> import numpy as np
>>> t start = 0.0
>>> t stop = 1.0
>>> Ts = 0.1
>>> n = int((t stop - t start)/Ts) + 1 # int() rounds downwards.
>>> t = np.linspace(t start,t stop,n)
>>> t
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])
>>> n
11

84

3.12. ARRAYS

[End of Example 3.18]

np.arange() instead of np.linspace()?

As an alternative to np.linspace (start, stop, number), we have np.arange
(start, stop, step). One difference between these functions is that they use,
respectively, number and steps as arguments to specify the distance (step
size) between the element values. Another difference – and that is the
most important difference – is that linspace includes the stop value in the
array, while arange() does not include the stop value.7

Example 3.19 Using arange() to create an array of points of time

This example is pretty much the example 3.18 based on linspace(), but
let’s use arange() instead:

>>> import numpy as np
>>> t start = 0.0
>>> t stopp = 1.0
>>> Ts = 0.1
>>> t = np.arange(t start,t stopp,Ts)
>>> t
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
>>> n
10

The number of elements becomes (of course) one less for arange() than for
linspace(), ie 10 and 11 respectively, given that the time step is the same
(set to Ts = 0.1 s in both cases).

[End of Example 3.19]

3.12.3.3 Multidimensional or n-dimensional arrays

So far we have used one-dimensional arrays. In general, Python/numpy
supports multidimensional arrays, or n-dimensional arrays where n is an
integer: 1 or 2 or 3, etc. More specifically:

• One-dimensional arrays, or 1D arrays, have the elements (whatever
their value) located along one dimension or axis. Such arrays are also

7I prefer linspace() over arange().

85

3.12. ARRAYS

called vectors. Visually, 1D arrays are similar to horizontal or
vertical lines (you can choose to consider 1D arrays as horizontal or
vertical lines).

• Two-dimensional arrays, or 2D arrays, have the elements located
along two dimensions or axes. Such arrays are also called matrix.
Visually, 2D arrays are similar to surfaces.

• Three-dimensional arrays, or 3D arrays, have elements placed along
three dimensions or axes. Such arrays are also called tensors.
Visually, 3D arrays resembles cubes.

• Etc.

Figure 3.10 illustrates 1D, 2D and 3D arrays. The Figure shows examples
of addressing specific elements (but I have not specified any the value of
the elements (numbers or text) in these examples).

Figure 3.10: 1D, 2D and 3D arrays

Here is an example where we create a matrix (2D array).

Example 3.20 Matrix (2D array)

We create a 2D array with 2 rows and 3 columns:

86

3.12. ARRAYS

>>> import numpy as np
>>> A = np.array([[0, 10, 20], [30, 40, 50]])
>>> A
array([[0, 10, 20],
[30, 40, 50]])

[End of Example 3.20]

We can generally create n-dimensional arrays, e.g. 19-dimensional arrays,
but we will not look into this.

3.12.4 Array operations

3.12.4.1 Introduction

In Chap. 3.9.2 we learned about various operations on lists, namely

• Find the length

• Read element values

• Update element with new values

• Expand with new elements

• Remove element

• Find maximum values and minimum values

The same operations can be performed on arrays and with the same
syntax as for lists. This is shown in the sections below.

3.12.4.2 The size of an array

Example 3.21 The length of an array

The length or number of elements in an array can be found with Python’s
built-in len() function:

87

3.12. ARRAYS

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> n = len(A)
>>> n
4

[End of Example 3.21]

What about multidimensional arrays? It is not easy to say what the length
of such arrays is. Although the len() function produces a result, we should
use the shape attribute of the array object instead of len(). The shape
attribute gives us the dimension of the array, ie the number of rows,
columns, etc.

Example 3.22 The dimension of a 2D array, i.e., an array

The code below finds the dimension of a 2D array, which is an array. Note
that the shape() method specifies the dimension in the form of a tuple,
here (m, n)!

>>> import numpy as np
>>> A = np.array([[1, 2], [3, 4], [5, 6]])
>>> A
array([[1, 2],
[3, 4],
[5, 6]])
>>> (m, n) = A.shape
>>> m
3
>>> n
2

[End of Example3.22]

3.12.4.3 Read element values in an array

We can read element values in an array by accessing the elements just as
for lists, and if possible assign the read element values to variables,
cf.3.9.2.1.

Example 3.23 Read element values in an array

88

3.12. ARRAYS

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> x = A[1]
>>> x
2.3

[End of Example 3.23]

Read a series of elements

Now we will read the series of elements fom. index 0 to (but not including)
index 2 in array A as we defined in example 3.23:

Example 3.24 Read a series of element values in an array

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> A[0:2]
array([0.1, 2.3])

[End of Example 3.24]

Read element values in a 2D array (array)

Example 3.25 Read element values in a 2D array (array)

We create a 2D array with 2 rows and 3 columns, which is the same array
as in the example 3.20:

>>> import numpy as np
>>> A = np.array([[0, 10, 20], [30, 40, 50]])
>>> A
array([[0, 10, 20],
[30, 40, 50]])

Then we can read e.g. the element in row 1 and column 2 in the array -
remember that the lowest index for both rows and columns is 0, and note
the addressing method with square brackets in series:

>>> x = A[1][2]
>>> x
50

[End of Example 3.25]

89

3.12. ARRAYS

3.12.4.4 Update elements in an array

Update one element

Example 3.26 Update one element in a list

Below, element of index 2 of the original list L = [0.1, 2.3, 4.5, 6.7] is
updated with the new value -4.5 as follows:

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> A[2] = -4.5
>>> A
array([0.1, 2.3, -4.5, 6.7])

[End of Example 3.26]

Update a series of list elements

To update a series of array elements from element i to – but not included –
element number j, we access the relevant part of the array (to be updated)
with the code A [i: j].

Example 3.27 Update a series of elements in an array

Here we update the series of elements 0, 1 and 2 with the values 0.5, 2.5
and respectively. 3.5. Note: We access the current list elements with the
code A [0: 3], not A [0: 2].

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> A[0:3] = [0.5, 2.5, 3.5]
>>> A
array([0.5, 2.5, 3.5, 6.7])

[End of Example 3.27]

3.12.4.5 Expand arrays with new elements

Remember how we can expand lists of new elements at the end of the list?
With the extend() or append() method of the list object. There are no

90

3.12. ARRAYS

such methods for array objects! Instead, we can use the np.append()
function, as demonstrated in the following example.

Example 3.28 Update a series of elements in one array

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> A = np.append(A,[8.9, 10.0])
>>> A
array([0.1, 2.3, 4.5, 6.7, 8.9, 10.])
>>> len(A)
6

Note: With the code only

np.append (A, [8.9, 10.0])

A does not expand. It is necessary to assign A the value of np.append (A,
[8.9, 10.0]), as done in the code above.

[End of Example3.28]

You can add new elements anywhere in an array with the np.insert()
function, but we will not look into it here.

3.12.4.6 Remove elements from arrays

We remove elements from lists with the del command, cf. 3.9.2.4. It does
not work on arrays! Instead, we can use the np.delete() function, as
demonstrated in the following example.

Example 3.29 Remove elements from an array

Below, we remove elements 1 and 2 from array A, and assign A the value
of the updated (reduced) array:

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> A = np.delete(A,[1,2])
>>> A
array([0.1, 6.7])

[End of Example 3.29]

91

3.12. ARRAYS

3.12.4.7 Find the maximum and minimum in arrays

We can find the index of the element that has the maximum value in an
array with the np.argmax() function. The same applies to the minimum
value; just replace argmax() with argmin(). Once this index is found, the
maximum element value can be found with regular addressing.

Example 3.30 How to find maximum value in an array

The following code finds the index of the maximum value element in the
list, as well as the value of this element:

>>> import numpy as np
>>> A = np.array([0.1, 2.3, 4.5, 6.7])
>>> i max = np.argmax(A)
>>> i max
3
>>> A[i max]
6.7

[End of Example 3.30]

3.12.5 Mathematical operations on arrays, including
matrices

3.12.5.1 Scalar addition and scalar multiplication

In many contexts we need

• to add a scalar to each array element

• to multiply each array element by a scalar

This can be done very easily in Python with, respectively, the + and *
operator (below, A is the array and s is the scalar):

A + s

and

92

3.12. ARRAYS

A*s

You may say that the syntax does not make sense, because we cannot
really add an array and a number, but you just have to bow our thanks.

Example 3.31 Addition of scalars to each element of an array

Here, we add 1 to an array:

>>> import numpy as np
>>> A = np.array([10, 20, 30])
>>> A + 1
array([11, 21, 31])

[End of Example 3.31]

Example 3.32 Multiplying each array element by a scalar

Here, we multiply by 3:

>>> import numpy as np
>>> A = np.array([10, 20, 30])
>>> A*3
array([30, 60, 90])

[End of Example 3.32]

3.12.5.2 How to create row vectors and column vectors and
arrays

In mathematics (linear algebra) we distinguish between row vectors and
column vectors. You can create row vectors and column vectors in Python
for 2D arrays only. In a sense, 1D arrays are neither row vector nor column
vector – just vector. You can also create matrices from given row vectors
and/or column vectors. We need to take a closer look at this.

How to make a row vector

Row vector (note that there are two square brackets in code line 2):

93

3.12. ARRAYS

>>> import numpy as np
>>> R = np.array([[1.1, 2.2, 3.3]])
>>> R
array([[1.1, 2.2, 3.3]])
>>> R.shape
(1, 3)

If you drops one of the square brackets, you get an array, but you can’t tell
if the array is a row vector or column vector, see the following example:

>>> import numpy as np
>>> R = np.array([1.1, 2.2, 3.3])
>>> R
array([1.1, 2.2, 3.3])
>>> R.shape
(3,)

The fact that R.shape gives (3,) means that R is only a vector with 3
elements, and cannot be classified as neither a row vector nor a column
vector.

How to create a column vector

We can create column vectors as follows:

>>> import numpy as np
>>> K = np.array([[1.1], [2.2], [3.3]])
>>> K
array([[1.1],
[2.2],
[3.3]])
>>> K.shape
(3, 1)

Alternatively, we can create a column vector a the transpose of a row
vector. To transpose is to reflect on an imaginary axis (diagonal), see
Figure 3.11. The figure shows, for example, the transposition of an array
in the form of a (2, 6) array, but the principle is the same regardless of the
number of rows and columns.

94

3.12. ARRAYS

Figure 3.11: Matrix transposition (2D Array)

Transposing can be achieved with the T method of the array object, which
is here the row vector R:

>>> import numpy as np
>>> R = np.array([[1.1, 2.2, 3.3]])
>>> K = R.T
>>> K
array([[1.1],
[2.2],
[3.3]])
>>> K.shape
(3, 1)

So, we got exactly the same K-vector as earlier.

Note: Trying to transpose a 1D array in Python is useless, as you only get
back the original 1D array. Transposing only works in higher dimensional
arrays.

How to create a matrix with given 1D arrays as column vectors

Suppose you create an array where the columns are to be formed from
existing 1D arrays. Eg. we can have two arrays like this:

• A 1D array named t that contains times for a series of measurements.

• A 1D array named m containing the measurement values of a
particular sensor (measurement element).

95

3.12. ARRAYS

All in all we have two 1D arrays, which we would like to collect in a data
array in the form of a 2D array named say d, where the two columns
originate. When we create such a matrix, we get a challenge because the
1D arrays cannot be considered as neither row vectors nor column vectors
– they are just vectors. The challenge can be solved by first creating a
matrix where the 1D arrays become row vectors, and then creating the
final matrix as the one transposed by this matrix. This is demonstrated by
example 3.33 below.

Example 3.33 An array of column vectors from given 1D arrays

Below are the t and m 1D arrays. The matrix d is made as the transpose
of the 2D array that has t and m as rows.

The 2D array d1 is generated as an intermediate result for the sake of
illustration. Of course, you can drop generating d1, and type d = np.array
([t, m]).T directly.

>>> import numpy as np
>>> t = np.array([0, 1, 2, 3, 4])
>>> m = np.array([30.0, 30.1, 30.2, 30.3, 30.4])
>>> d1 = np.array([t, m])
>>> d1
array([[0. , 1. , 2. , 3. , 4.],

[30. , 30.1, 30.2, 30.3, 30.4]])
>>> d1.shape
(2, 5)
>>> d
array([[0. , 30.],

[1. , 30.1],
[2. , 30.2],
[3. , 30.3],
[4. , 30.4]])

>>> d.shape
(5, 2)

[End of Example 3.33]

3.12.5.3 Vector and matrix multiplications

In linear algebra we encounter both addition and multiplication of vectors
and matrices always. Python actually has the ability to transform arrays

96

3.12. ARRAYS

into arrays – or rather: array objects – with the np.mat() function, which
works like this:

M = np.mat(A)

so that one can use the syntax for addition and multiplication with + and
* on the matrix object (just like in the known MATLAB calculation tool).

But now the Python developers have decided that the matrix object will
soon be out of life. Therefore, it is just as easy to forget matrix objects:

M = np.mat(A)

Therefore:

We should use array objects in vector and matrix multiplications because
matrix objects have an uncertain future!

How do we then add and multiply vectors and matrices? There are several
ways to do this, but I think the neatest thing is to make sure that the
vectors and matrices are 2D arrays, and then perform the mathematical
operation on these 2D arrays:

Addition:

A1 = A1 + A2

That is, the syntax is as for matrix objects.

But for multiplication, there are news:

A3 = A1 @ A2

So instead of *, we use @ (the at character).

Here is an important rarity when it comes to multiplication: To multiply a
matrix in the form of a 2D array with a scalar, then the @ operator
unfortunately does not work; then you must use the * operator just like in
Section 3.12.5.1:

A * s

97

3.12. ARRAYS

About the use of words: As a result of what has been said above, I hereby
stop talking about matrices in the form of matrix objects in Python. But I
will continue to talk about matrices, assuming they are 2D arrays in
Python.

Multiplication of vectors

From mathematics we know that the scalar product (also called the inner
product or the dot product) between two vectors a and b where both are
assumed to be row vectors, are8

p = a · bT

In Python we can calculate this with the @ operator for multiplication:

p = a @ b.T

Example 3.34 Scalar product

Here we create two row vectors, then calculate their scalar product, which
actually becomes in the form of a 2D array. We should have liked the result
as a floating point, and we get that with Python’s built-in float() function:

>>> import numpy as np
>>> a = np.array([[0, 1, 2]])
>>> b = np.array([[3, 4, 5]])
>>> p = a @ b.T
>>> p
array([[14]])
>>> f = float(p)
>>> f
14.0

Python can actually calculate the scalar product with a simpler syntax, see
below. Maybe you like this syntax better than the “rigid” syntax above.

>>> import numpy as np
>>> a = np.array([0, 1, 2])
>>> b = np.array([3, 4, 5])
>>> p = a @ b
>>> p
14.0

8If a and b are one and the same vector, i.e. a = b, the scalar product is the square of
the length of the vector.

98

3.12. ARRAYS

Question: Can we use the “natural” product operator * to calculate the
scalar product, ie, can we write p = a * b? Just try it!9

Finally, I mention that numpy offers the vdot() function to calculate the
scalar product (dot product) of vectors:

>>> import numpy as np
>>> a = np.array([0, 1, 2])
>>> b = np.array([3, 4, 5])
>>> p = np.vdot(a, b)
>>> p
14

[End of Example 3.34]

Multiplication of matrices and vectors

Matrices and vectors are naturally multiplied by the @ operator, as
demonstrated in the following example.

Example 3.35 Multiplication of matrix and vector

Given the matrix

M =

[
1 0
0 2

]
and the vector

v =

[
3
4

]
The product of M and v is

p = Mv =

[
1 0
0 2

]
·
[

3
4

]
=

[
3
8

]

The following code calculates this product:

>>> import numpy as np
>>> M = np.array([[1, 0], [0, 2]])
>>> v = np.array([[3], [4]]) # Column vector
>>> p = M @ v
>>> p
array([[3],

[8]])

9The answer is no.

99

3.12. ARRAYS

Want to see if p = M * v gives the same result?

[End of Example 3.35]

Multiplication of Matrices

Matrices are naturally multiplied by the @-operator, just as when
multiplying matrices and vectors. I skip an example on this.

3.12.6 Matrix functions for linear algebra

The numpy package with its linealg module has a large collection of matrix
functions for linear algebra. The examples below illustrate its use.

Example 3.36 A couple of examples of matrix functions in linear algebra

Here, the determinant of a matrix is calculated:

>>> import numpy as np
>>> M = np.array([[1, 0], [0, 2]])
>>> det M = np.linalg.det(M)
>>> det M
2.0

Here, an array is inverted:

>>> import numpy as np
>>> M = np.array([[1, 0], [0, 2]])
>>> inv M = np.linalg.inv(M)
>>> inv M
array([[1. , 0.],

[0. , 0.5]])

[End of Example 3.36]

3.12.7 Vectorized calculations

Suppose you use a given function in Python on each of the n elements of
an array, which we call vector. Initially, you must then apply the function
once to each of the n elements, ie n times. It can be cumbersome.
Fortunately, Python developers have thought of this. They have facilitated

100

3.12. ARRAYS

so-called vectorization, which implies that vector – and not each of the
elements – is specified as the function’s input argument. Thus, it keeps
entering the function once in the program. Figure 3.12 illustrates
vectorization vs. non-vectorization. In the example, the sqrt() function is
the function of the numpy package.

Figure 3.12: Illustration of vectorization vs. non-vectorization. The sqrt()
function in the numpy package is used as an example function. (To save
space in the drawing I have written sqrt() instead of np.sqrt().)

The example below illustrates vectorization with the np.sqrt() function.
We are going to calculate the square root of 5 number values together in a
vector (array).

>>> import numpy as np
>>> x = np.array([0, 10, 20, 30, 40])
>>> y = np.sqrt(x)
>>> y
array([0. , 3.16227766, 4.47213595, 5.47722558, 6.32455532])

How can we realize these 5 square root calculations without vectorization?
Below is a solution, which is based on manually repeated calculations:

101

3.12. ARRAYS

>>> import numpy as np
>>> x = np.array([0, 10, 20, 30, 40])
>>> y = np.zeros(5) # Preallokering
>>> y[0] = np.sqrt(x[0])
>>> y[1] = np.sqrt(x[1])
>>> y[2] = np.sqrt(x[2])
>>> y[3] = np.sqrt(x[3])
>>> y[4] = np.sqrt(x[4])
>>> y
array([0. , 3.16227766, 4.47213595, 5.47722558, 6.32455532])

The answer is the same as with vectorization, but achieved much more
cumbersome.

Comment on the preallocation of y in the program above: Code line y =
np.zeros (5) realizes so-called preallocation of the array y, i.e., it is set
aside for the array y in the PC’s memory before the elements in y get their
correct values. We know that y becomes an array of 5 elements, so we can
preallocate with e.g. the array np.zeros (5), which is [0, 0, 0, 0, 0]. In
general, we can save a lot of execution time for our programs if we use
preallocation of arrays that we know the length of. If we do not use
preallocation, we must use the append() method to extend the array y
with ever-new values – and the use of append() should be avoided if we
can instead use preallocation. We will get closer to preallocation and time
saving with preallocation in chap. 8.2.

Vectorization is not the only way to streamline repeated calculations. We
can create a so-called for loop (python: for-loop) that runs through the
loop 5 times, and for each time the square root of the relevant element in
the vector (array) x is calculated. Although for loops are described in
Chap. 8.2, let’s use the for loop here (in the example below). The
following two code lines are for the loop:

for k in range (0, 5)
y[k] = np.sqrt(x[k])

For each k-value in the interval (0, 5), but – note – 5 is not included, y [k]
= np.sqrt (x [k]) is calculated. The k-values are thus 0, 1, 2, 3 and 4. The
for loop performs the square root calculation for each element in x, a total
of 5 times.

102

3.12. ARRAYS

>>> import numpy as np
>>> x = np.array([0, 10, 20, 30, 40])
>>> y = np.zeros(5)
>>> for k in range(0, 5):

y[k] = np.sqrt(x[k])
>>> y
array([0. , 3.16227766, 4.47213595, 5.47722558, 6.32455532])

Vectorization used in ordinary mathematical expressions

Figure 3.13: Body in free fall

Figure 3.13 shows a body in free fall, without air resistance, that was
released at time 0 s. From physics, we know, that, at time t, the body has
fallen the distance s [m] given by:

s =
1

2
gt2 (3.1)

g = 9.81 m/s2 is the acceleration of gravity. Suppose we calculate s for
each of the times fom. 0 tom. 5 s with time steps 1.0 s. The program
below realizes this.10

10All Python prompts (>>>) indicate that the code is executed from a command line,
but you can alternatively write all the code lines in a script and run the script.

103

3.12. ARRAYS

>>> import numpy as np
>>> t start = 0 # [s]
>>> t stop = 5.0 # [s]
>>> Ts = 1.0 # [s]
>>> n = int((t stop - t start)/Ts + 1)
>>> g = 9.81 # [m/s2]
>>> t = np.linspace(t start, t stop, n)
>>> s = (1/2)*g*t*t
>>> t
array([0., 1., 2., 3., 4., 5.])
>>> s
array([0. , 4.905, 19.62 , 44.145, 78.48 , 122.625])

Note this code line:

s = (1/2)*g*t*t

In this expression, s is calculated by the vectorized multiplication t * t
where t is a vector (1D array) of times:

array([0, 1, 2, 3, 4, 5])

The expression t * t is calculated by Python like this (I drop for simplicity
“np.array” here, and I also drop the decimal points):

t*t
= [0, 1, 2, 3, 4, 5]*[0, 1, 2, 3, 4, 5]
=> [0*0, 1*1, 2*2, 3*3, 4*4, 5*5]
= [0, 1, 4, 9, 16, 25]

Thus, vectorized multiplication. We could also have said element-wise
multiplication of two vectors (arrays).

Something to think about

Vectorized calculation, as shown above, is elegant and efficient. But also a
little scary. If a mathematician had flipped through these pages of the book
without knowing the context (which is vectorized calculations in Python),
I would think she/he had interpreted t * t as scalar with 55 as the result:

t · t = [0, 1, 2, 3, 4, 5] · [0, 1, 2, 3, 4, 5] = [0 ·0+1 ·1+2 ·2+3 ·3+4 ·4+5 ·5] = 55

But the Python term t * t does represent scalar product here. If you really
need to calculate the scalar product t · t, you can write the code t@t which

104

3.12. ARRAYS

will be ok since t is a 1D array. Alternatively, you can define t as a row
vector in the form of a 2D array, and calculate the scalar product with
t@t.T, cf. Section 3.12.5.3. Another alternative for calculating the scalar
product, is the vdot function: np.vdot (t, t).

Summary

There are alternative ways of realizing repeated function calculations.
They can be ranked this way, by both ease of use and efficiency:

1. Vectorization

2. For Loops

3. Manually repeated calculations

105

Chapter 4

Presenting data in charts
and diagrams

4.1 Introduction

Probably the most commonly used Python package for presenting data
graphically in charts and diagrams is matplotlib, which has website on

https://matplotlib.org

Matplotlib allows for a variety of different types of graphical presentations.
We will in this chapter take a look at some of the most common types,
namely:

• line plots

• bar charts

• pie charts

• histograms

4.2 Line plot

As a starting point to learn more about plotting, we will use the program
for plotting temperatures in Skien from Chap. 1.2. The program is

106

4.2. LINE PLOT

reproduced below, but now - for simplicity - almost without comments in
the code. I commented the program in Chap. 1.2. I will now provide even
more comments, and then show some extensions of the program that I
assume are of particular interest.

4.2.1 Basic plot functions

Running the program below generates the line plot shown in Figure 4.1.

Program name: prog plot temp skien.py

import numpy as np
import matplotlib.pyplot as plt

mnd = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) # month
no.
temp = np.array([-3, -2, 2, 7, 11, 15, 17, 16, 12, 6, 2, -3]) # deg C
mean temp = np.mean(temp) # Mean values

Plotting av temperaturverdiene:

plt.close(’all’)
plt.figure(’Monthly mean temp i Skien’)
plt.plot(mnd, temp, ’o-’)
plt.xlim(1, 12)
plt.ylim(-5, 20)
plt.title(’Monthly mean temp in Skien year 2005-2015’)
plt.xlabel(Month no.’)
plt.ylabel(Deg C’)
plt.grid()
plt.show()

plt.savefig(’temp skien.pdf’)

107

4.2. LINE PLOT

0 2 4 6 8 10 12
Month no.

5

0

5

10

15

20
[D

eg
 C

]
Monthly mean temp in Skien year 2005-2015

Figure 4.1: Line plot of montly mean temperatures in Skien

Comments on the part of the program concerning plotting (here is a little
repetition from chap. 1.2):

• The code import matplotlib.pyplot as plt imports the pyplot module
which is part of the matplotlib package and makes the module
available to us through the name plt. This rename is Python
tradition. the pyplot module allows you to set e.g. line type (e.g.,
dotted), line color (e.g., blue), grid, descriptive text, etc.

• The code plt.close (’all’) closes all existing figure windows, which
may be fine to clean up and reset before new plotting.

• The code plt.figure (’Monthly mean temp in Skien’) opens a figure
window which gets a “number” similar to the text ’Monthly mean
temp in Skien’, and prepares the figure for plotting with subsequent
plot commands. You can also use numbers such as figure numbers,
e.g. plt.figure (1).

• The code plt.plot (month, temp, ’o-’) plots the temp (y values) array
against the mnd (x values) array. Basically, the points (month [0],
temp [0]), (month [1], temp [1]), etc. are plotted. Of course, these
arrays must have the same number of elements. In this example,
data in arrays is plotted, but lists can also be plotted.

108

4.2. LINE PLOT

• The text string ’o-’ in the code plt.plot (month, temp, ’o-’)
determines the appearance of the curve: ’o’ means that each point is
plotted with a filled circle. ’-’ indicates the straight line between the
points. You can also set color. The codes can be combined fairly
freely, as ’o-’ is an example of. The most relevant codes are:

– Dot mark: ’o’ for open circle. ’*’ for star. ’.’ (dot) for dot.
Default (ie the dot mark that Python selects, if no code is
entered) is dot.

– Line (interpolation) between the points: ’-’ for the solid line. ’-’
for dotted line. ’-.’ for line + point. Default is the solid line.

– Color: ’b’ for blue. ’r’ for red. ’y’ for yellow. ’g’ for green. ’k’
for black. Default is blue.

• The code plt.xlim (1, 12) and the code plt.ylim (-5, 20) indicate the
smallest and largest value along the x-axis and the y-axis,
respectively.

• The code plt.xlim (1, 12) and the code plt.ylim (-5, 20) indicate the
smallest and largest value along the x-axis and the y-axis,
respectively.

• The codes plt.xlabel (’Month no.’) and plt.ylabel (’Deg C’) is written
along the x-axis and the y-axis, respectively. The arguments are text
strings.

• The code plt.grid() creates a grid.

• The code plt.show() ensures that the figure is displayed. In Spyder,
the figure is shown even though plt.show() is omitted, but in other
programming environments, eg. Visual Studio Code, it may be
necessary to include plt.show().

• The code plt.savefig (’temp skien.pdf’) creates a pdf file of the plot.
If you want a png file, replace ’temp skien.pdf’ with
’temp skien.png’. The same applies to jpg files. The file is stored in
the same directory where the script is stored.

Plot in multiple figure windows?

So far we have plotted in a figure window. If you want to have multiple
plots in their own figure window, open new figure windows with respective
plt.figure (figure name) expressions, where figure names can be text or
integer, e.g.

• plt.figure(’Monthly temp in Porsgrunn’) or

109

4.2. LINE PLOT

• plt.figure(2).

After the plt.figure() expression, type the appropriate plot commands,
which will then apply to the last opened figure window.

4.2.2 Viewing Plots in the Spyder Console or External
Window?

You can decide whether a plot figure (plot Figure) should appear in the
Spyder console or in an external window. The two options are discussed in
more detail below.1

4.2.2.1 Plot figures to be shown in the Spyder console

Figure 1.6 shows a Figure of a plot shown in the Spyder console. An
advantage of such a view is that then the figure will be displayed together
with the result of calculations, in the same order as in the program code.
One disadvantage is that the figure becomes quite small since it must fit in
the console.

How do you get Spyder to show characters in the console? One way is to
execute the command

%matplotlib inline

on the console command line. % matplotlib inline is an example of a
so-called magic command, which belongs to IPython (Interactive Python),
which is the user interface to Python implemented in e.g. Spyder.

An alternative to the magic command mentioned above is the following
menu options in Spyder:

Tools / Preferences / IPython console / Graphics / Graphics backend /
Backend

where you select Inline in the menu, see Figure 4.2.

1I myself tend to use external window.

110

4.2. LINE PLOT

Figure 4.2: How to set Graphics backend to Inline via the Tools / Preferences
menu in Spyder

By right-clicking on the figure in the console, you get the following two
options:

• Copy Image, which makes a copy of thefFigure on the PC’s
clipboard. From there you can paste the figure into a word processor
(eg MS Word) or a drawing program (eg with the shortcut ctrl + V).

• Save Image As, which allows you to save the image as a png file.

The choice to display plot figures inline, ie in the console, remains until
you choose to display the plot figures in an external window. Te choice is
remembered between each time you run programs, and it is also
remembered if you exit Spyder and enter again.

Plot figures to be shown in an external window

Plot figures can be displayed in an external window (outside the Spyder
window), see Figure 4.3.

111

4.2. LINE PLOT

Figure 4.3: A plot figure shown in an external window (outside the Spyder
window)

An advantage of displaying the plot the figure in an external window is
that the figure becomes larger than it appears in the console. Another
advantage is that the figure window provides a number of possibilities for
figure processing, including choose the appearance of curvature lines.
color, line type, etc., zoom, saving the figure to a file, including pdf, png
and jpg.2

I do not go through all the menu choices in the figure window (they are
easy to find out).

How do you get Spyder to display characters in an external window? One
way is to execute the magic command

%matplotlib auto

on the console command line.

An alternative to this magic command is the following menu options in

2pdf should be used if the text editor allows, since pdf is based on vector graphics,
which provides maximum resolution, ie best image quality. In this book I use pdf graphics
as much as possible.

112

4.2. LINE PLOT

Spyder:

Tools / Preferences / IPython console / Graphics / Graphics backend /
Backend

where you select Automatic in the menu, see Figure 4.2.

4.2.3 How to plot multiple curves at the same time

4.2.3.1 Multiple curves in one and the same diagram

The program code below shows how several - here two - curves can be
plotted in one and the same diagram. The two curves are the monthly
temperature values (temp) and the mean (mean temp) of these
temperature values.

The code also shows how each curve can be identified with a curve legend
realized with the plt.legend() function. Figure 4.4 shows the plot.

Program name: prog plot temp skien several curves.py

113

4.2. LINE PLOT

import numpy as np
import matplotlib.pyplot as plt

month = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
temp = np.array([-3, -2, 2, 7, 11, 15, 17, 16, 12, 6, 2, -3])

mean temp = np.mean(temp)

mean temp array = np.zeros(len(temp)) + mean temp

Plotting av temperaturverdiene:
plt.figure(1)
plt.plot(month, temp, ’o-b’, month, mean temp array, ’g’)
plt.title(’Monthly mean temp in Skien 2005-2015’)
plt.xlabel(Month no.’)
plt.ylabel(’Deg C’)
plt.legend(labels=(’Temperature’, ’Mean temp’),

loc=’upper right’,
handlelength=2,
fontsize=8)

plt.grid()
plt.show()

114

4.2. LINE PLOT

2 4 6 8 10 12
Month no. [nr.]

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

[D
eg

 C
]

Monthly mean temp in Skien 2005-2015
Temperature
Mean temp

Figure 4.4: Multiple curves plotted in a single diagram identified by curve
description generated by the plt.legend() function

Note how the plt.plot() function is used to plot multiple curves in one
chart:

plt.plot(mnd, temp, ’o-b’, mnd, mean temp array, ’g’)

where the text string ’o-b’ means circles connected by straight lines of blue
color and the text string ’g’ means green color.

The general syntax for plotting more than one curve (here two) is

plt.plot(x1 array, y1 array, ’formatting1’, x2 array, y2 array, ’formatting2’)

I’ve included here “array” in the variable names just to emphasize that the
data type is array, but you are of course free to choose the variable name.

Generally in such composite plots, x1 array and x2 array may have
different lengths (number of elements), but x1 array and y1 array must
have equal lengths, and x2 array and y2 array must have equal lengths. In
our example, all the arrays have equal lengths.

115

4.2. LINE PLOT

For the plot of the mean temperature, we need an array of length equal to
the temp array and with mean temp as the value for all the elements. In
the program, this array is created with this code:

mean temp array = np.zeros(len(temp)) + mean temp

Alternatively, I could have used this slightly shorter code:

mean temp array = temp*0 + mean temp

Curve description with plt.legend()

In the upper right of the plot figure in Figure 4.4 it is a curve description
(legend) realized with the plot.legend() function. Comments:

• The labels parameter specifies the text for each curve.

• The location parameter is set to ’upper right’. The possibilities are:

– best (default)

– upper right

– upper left

– lower left

– lower right

– right

– center left

– center right

– lower center

– upper center

– center

• The handle length parameter specifies the length of the relatively
short selection curve in the curve description measured by the font
size as a unit.

• The font size parameter specifies the font size.

Note: If the curve description applies to only one curve, let’s say only the
Temperature curve, you must include a comma and blank:

plt.legend(labels=(’Temperature’,)

116

4.2. LINE PLOT

4.2.3.2 Multiple plots in a figure using subplot

You can have multiple plots in a figure window. These plants are called
subplots. Subplot is organized with the function

plt.subplot(m,n,no)

where m is the number of rows, n is the number of columns and n is the
number of the plot, see Figure 4.5. no is 1 for the subplot in the upper left
and is counted from there to the right and then down as shown in Figure
4.5. We can designate all the subplots together as a (n, m) plot.

Figure 4.5: Organization of the subplots in a (n, m, no) plot

Below is an example of a (2x1) subplot.

Example 4.1 Subplot

117

4.2. LINE PLOT

import numpy as np
import matplotlib.pyplot as plt

x1 array = np.array([0, 1, 2])
y1 array = x1 array * 10
x2 array = np.array([0, 1, 2])
y2 array = x1 array * (-10)
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(x1 array, y1 array)
plt.xlabel(’x1’)
plt.ylabel(’y1’)
plt.grid()
plt.subplot(2,1,2)
plt.plot(x2 array, y2 array)
plt.xlabel(’x2’)
plt.ylabel(’y2’)
plt.grid()
plt.show()

Figure 4.6 shows the diagram with the two subplots.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x1

0

5

10

15

20

y1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x2

20

15

10

5

0

y2

Figure 4.6: Subplott

[End of Example 4.1]

118

4.2. LINE PLOT

4.2.4 Mathematical symbols in chart title

You can include beautiful mathematical symbols in plt.title(), plt.xlabel()
and plt.ylabel(). For this use codes from Latex, which is a text formatting
system for books, scientific articles, etc. Example 4.2 demonstrates this.

Example 4.2 Latex-code in plt.title()

Some random data are plotted in the program shown below. Take a close
look at the relationship between the code in the plt.title() argument and
the plot shown in Figure 4.7. I guess you see how Latex code can be used
(I won’t explain this in detail).

Note:

• The letter r is just before the text strings with Latex code, e.g. r ’$
x {a 1} $’. r stands for "raw text". Without r, the Latex codes will
not work.

• The ’\ n’ text line (newline) is used to create more lines than one.

Programmets navn: prog plot latex.py

import numpy as np
import matplotlib.pyplot as plt

x array = np.array([0, 1, 2])
y array = x array * 10
plt.figure(1)
plt.plot(x array, y array)
plt.title(’Beautiful:’ + ’\n’

+ r’$x {a 1}$’
+ ’ and ’ + r’$\sqrt{\alpha\beta\gamma\Omega\pi\theta\tau}$’
+ ’ and ’ + r’$\int 0ˆt z d\tau$’
+ ’ and finally ’ + r’$\sum {k=0}ˆ{N-1} y(k)$’)

plt.xlabel(’x’)
plt.ylabel(’y’)
plt.grid()
plt.show()

119

4.2. LINE PLOT

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y
Beautiful:

xa1 and and
t

0zd and finally
N 1

k = 0
y(k)

Figure 4.7: Latex code is used in plt.title().

[End of Example 4.2]

4.2.5 How to set the size of the plot figure

You can set the size of a plot figure using. the argument figsize in the
plt.figure() function:

plt.figure(num=1, figsize=(fig width inch, fig height inch))

where figsize is a tuple of two values, namely fig width inch which is the
figure’s width in inches, and fig height inch which is the figure’s height in
inches. The width and height in inches can of course be calculated from
the width and height indicated in e.g. centimeter.

Example 4.3 Latex code in plt.title()

The program in the example below plots x array vs. y array (which

120

4.3. BAR CHARTS

consists of customs data) in a figure window with width 24 cm and height
18 cm. (The figure itself does not appear here as it contains no interesting
information.)

import numpy as np
import matplotlib.pyplot as plt

x array = np.array([0, 1, 2])
y array = x array * 10

fig width cm = 24
fig height cm = 18
cm per inch = 2.54
fig width inch = fig width cm/cm per inch
fig height inch = fig height cm/cm per inch

plt.figure(num=1, figsize=(fig width inch, fig height inch))
plt.plot(x array, y array)
plt.title(’Tittel y vs. x’)
plt.xlabel(’x’)
plt.ylabel(’y’)
plt.grid()
plt.show()

[End of Example 4.3]

4.3 Bar charts

Example 4.4 demonstrates presenting data in a bar graph.

Example 4.4 Bar graph

The program below generates the bar graph shown in Figure 4.8.

121

4.3. BAR CHARTS

Alfa Beta Gamma
Bank name

0

5

10

15

20

25

30

De
bt

 [M
NO

K]

10

20

30
Debt overview

Figure 4.8: Bar graph

Program name: prog bar graph.py.

122

4.4. PIE CHARTS

import matplotlib.pyplot as plt
import numpy as np

Data to be plotted:
x = [’Alfa’, ’Beta’, ’Gamma’]
y = np.array([10, 20, 30])

Size of figure window:
fig width cm = 24
fig height cm = 18
plt.figure(num=1, figsize=(fig width cm/2.54, fig height cm/2.54))

Plots a bar graph:
plt.bar(x, y, width=0.8, color=(’green’, ’blue’, ’red’))

Plots text on top of each bar using plt.txt():
offset y = 0.5
for k in range(0, len(x)):

plt.text(x[k], y[k]+offset y, str(y[k]))

plt.title(’Debt overview’)
plt.xlabel(’Bank name’)
plt.ylabel(’Debt [MNOK]’)

#plt.show()

[End of Example 4.4]

4.4 Pie charts

Example 4.5 demonstrates plotting data in a pie chart.

Example 4.5 Pie chart

The program below generates the pie chart shown in Figure 4.9.

123

4.4. PIE CHARTS

Pi: 1
4.8%

Upsilon: 2

9.5%

Theta: 3

14.3%
Eta: 4

19.0%

Omikron: 5

23.8%

Nu: 6

28.6%

Figure title

Figure 4.9: Pie chart

Program name: prog pie chart.py.

124

4.5. HISTOGRAM

import matplotlib.pyplot as plt
import numpy as np

Data and text to be displayed in the pie diagram:
data = np.array([1, 2, 3, 4, 5, 6])
data normalized = data/sum(data)
my labels = [’Pi: ’ + str(data[0]),

’Upsilon: ’ + str(data[1]),
’Theta: ’ + str(data[2]),
’Eta: ’ + str(data[3]),
’Omikron: ’ + str(data[4]),
’Nu: ’ + str(data[5])]

Size of figure window:
fig width cm = 24
fig height cm = 18
plt.figure(num=1, figsize=(fig width cm/2.54, fig height cm/2.54))

Pie diagram:
plt.rc(’font’, size=12) # rc is abbrev for ’run configuration’
plt.pie(normalized, labels=my labels, autopct=’%.1f%%’)
plt.title(’Figure title’)

#plt.show()

[End of Example 4.5]

4.5 Histogram

Example 4.6 demonstrates plotting data in a histogram.

Example 4.6 Histogram

The program shown below generates the histogram shown in Figure 4.10.

125

4.5. HISTOGRAM

4 3 2 1 0 1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

Figure 4.10: Histogram

Program name: prog histogram.py

126

4.6. INTERACTIVE PLOTS

import numpy as np
import matplotlib.pyplot as plt

Data to be plotted:
n = 10000 # Number of random values
x = np.random.randn(n) # The random values
num bins = 20 # Number of bins

Size of figure window:
fig width cm = 24
fig height cm = 18
plt.figure(num=1, figsize=(fig width cm/2.54, fig height cm/2.54))

Plotting the histogram:
plt.hist(x, num bins, color=’green’)
plt.grid()

#plt.show()

[End of Example 4.6]

4.6 Interactive plots

Interactive plots are plots that are updated after the user has manipulated
the user interface widgets in the figure window itself. You can create
interactive plots in Matplotlib.

Typical user interface elements – often called GUI-elementes (GUI =
Graphical User Interface) – are:

• Text in textboxes, which are interpreted as numbers (pytonsk:
textboxes)

• Buttons

• Radio buttons

• Sliders

These GUI elements are objects that have methods (functions) that
respond to – or are fired by – events such as value change, button click and
press the Enter key. And these methods can be used to call any function

127

4.6. INTERACTIVE PLOTS

that we have created ourselves, e.g. a function to update a function value
and plot the new value. Here is a small taste of Example 4.7:

textbox a.on submit(fun submit a)

there:

• textbox a is a textbox object that represents a textbox that is
embedded in the character window itself.

• on submit is a method associated with the textbox object. The
method "fires off" or is activated by an "on submit" event, which is
that the user has pressed the Enter key after a new value is entered
in the text box. When firing, the method calls a user-defined function
which here is assumed to have the name fun submit a, which does
one or the other, e.g. performs a calculation or updates a plot.

• fun submit a is the name of the user-defined function.

We shall now study an example where a curve with two parameters, a and
b, is plotted. When we change a or b via the respective text boxes in the
figure window, the plot changes immediately.

Example 4.7 Interactive plot with adjustable numbers in textboxes

Program name: prog interactive plot textbox.py

The curve to be plotted is given by the following function:

y = ax + b (4.1)

where x is in the range [0, 2] of solution 0.001. The default values are
a = 1 og b = 0. Figure 4.11 shows a plot of (4.1) with these default values,
and Figure 4.6 shows a plot after that a and b has been changed to a = −1
respectively b = 1 via the textboxes in the figure window.

128

4.6. INTERACTIVE PLOTS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

a = 1.0

b = 0.0

Figure 4.11: Plot of (4.1) with a = 1 and b = 0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

a = -1.0

b = 1.0

Figure 4.12: Plot of (4.1) with a = −1 and b = 1

The program that realizes this is shown below.3

3The program is based on the program https://matplotlib.org/gallery/widgets/textbox.html#sphx-
glr-gallery-widgets-textbox-py, which I have modified so that there are two text boxes
instead of one.

129

4.6. INTERACTIVE PLOTS

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import TextBox

Function for updating plot with new value of param a:
def fun submit a(dummy arg):

a = eval(text box a.text)
b = eval(text box b.text)
y array = a*x array + b
line 1.set ydata(y array)
ax.set ylim(np.min(y array), np.max(y array))
plt.draw()

Function for updating plot with new value of param b:
def fun submit b(dummy arg):

a = eval(text box a.text)
b = eval(text box b.text)
y array = a*x array + b
line 1.set ydata(y array)
ax.set ylim(np.min(y array), np.max(y array))
plt.draw()

Opening new Figure with one positioned plot
plt.close(’all’)
fig width inch = 24/2.54
fig height inch = 18/2.54
(fig, ax) = plt.subplots(num=’Interactive plot’,

figsize=(fig width inch, fig height inch))
left=0.125; bottom=0.3; right=0.9; top=0.9
plt.subplots adjust(left, bottom, right, top)
plt.ylim(-2, 2)

To be continued:

130

4.6. INTERACTIVE PLOTS

Continued:

Generating and plotting y array using initial values of a and b:
x array = np.arange(0.0, 2.0, 0.001)
a = 1
b = 0
y array = a*x array + b
(line 1,) = plt.plot(x array, y array)
plt.grid(which=’both’, color=’grey’)

Generating textboxes for a and b:
left a=0.1; bottom a=0.15; width a=0.1; height a=0.05
left b=0.1; bottom b=0.05; width b=0.1; height b=0.05
axbox a = plt.axes([left a, bottom a, width a, height a])
axbox b = plt.axes([left b, bottom b, width b, height b])
caption a = ’a = ’
caption b = ’b = ’
initial text a = "1.0"
initial text b = "0.0"
text box a = TextBox(axbox a, caption a, initial text a)
text box b = TextBox(axbox b, caption b, initial text b)

Invoking the functions named fun submit a() or fun submit b()
on click on Enter button of a or b:
text box a.on submit(fun submit a)
text box b.on submit(fun submit b)

plt.show()

Comments on the program (but only comments regarding the realization
of interactive plot with textbox):

• Code line from matplotlib.widgets import TextBox imports the
textbox object.

• The code line def fun submit a (dummy arg): is the beginning of the
definition of the function fun submit a(). This function uses the
updated values of a and b to calculate the updated value of y array
and plot y array vs. x array. The fun submit a() function is called
only when the user has entered a new value in the text box for
parameter a (not b). dummy arg is an argument that is not used,
but Python returns an error message if that argument is dropped.

• The code line a = eval (text box a.text) interprets the text

131

4.6. INTERACTIVE PLOTS

text box a.text, which is the text in the text box element for
parameter a, as a number.

• The code line b = eval (text box b.text) is like the code line above,
but for parameter b.

• The code line line 1.set ydata (y array) updates the plot identified
with the object called line 1. This identification occurs in the code
line (line 1,) = plt.plot (x array, y array) in the main part of the
program.

• The code line # ax.set ylim (np.min (y array), np.max (y array)) is
actually "commented away", but I’ve included it to show how you
can adjust the value range along the y axis to the updated value of
y array.

• The plt.draw() code line ensures that the plot is updated.

• The code line def fun submit b (dummy arg): is the beginning of the
definition of the function fun submit b(). The comments here are as
for the fun submit a() function.

• The code line under # Opening new Figure with one positioned plot
opens a figure window with a plot figure of specified size and location:

– The size is indicated by the figsize argument.

– The location is specified with the code plt.subplots adjust (left,
bottom, right, top) where the unit for the four parameters is the
height and width of the figure window. You can count to get the
desired size and position, but a little trial and error will
probably work well.

• The code under # Generating and plotting y array based on initial
values of a and b: generates an initial plot. The plot is updated if
the user sets new values for parameters a and b in the respective text
boxes.

• The code line line 1, = plt.plot (x array, y array) creates an object
called line 1, which is used as a reference to the plot Figure in the
functions fun submit a and fun submit b.

• The code under # Generating textboxes for a and b: generates the
text boxes for parameters a and b. The unit for left a, bottom a, etc.
is the height and width of the figure window. Trial and error to get
usable size and placement of text boxes works well.

• Code line text box a.on submit (fun submit a):

132

4.6. INTERACTIVE PLOTS

– text box a is the object that represents the text box for
parameter a.

– on submit is a method of the text box a object. When the user
presses the Enter key in the text box, the function is called
fun submit a, which the user has defined (see comment on this
function further up in this comment list). Actually, the text in
the text box is transferred to this function, but I have chosen
not to use this text in the fun submit a() function. Instead, I
make sure to read the value of the text attribute of the
text box a object, as well as the text attribute of the text box b
object, in the fun submit a() function. Thus, the fun submit a()
function will use the updated values of both a and b whenever
the y array is updated.

• Code line text box b.on submit (fun submit b): Here the comments
are exactly the same as for the code line text box a.on submit
(fun submit a) above.

[End of Example 4.7]

133

Chapter 5

Programming of functions

5.1 Introduction

A little rehearsal from chap. 3.4 about functions: A function "does
something" with the value of the function’s input or input argument, and
produces a result. When the result is a value, e.g. the square root of the
input argument, is called the result output or output argument, see Figure
5.1. But not all functions produce values. Some “do a job”, e.g. plots data
or writes data to a file.

Figure 5.1: Function with input argument and output argument

At the front of the book we have met many pre-programmed functions.
Some examples:

• int(), float(), len(), print() which is in the library of inbuilt functions
in Python, see Figure 2.26. We can also say that this library is
Python’s standard suite of functions.,

• np.array(), np.linspace(), np.mean(), etc. which is included in the
numpy package (here represented by “np” in front of the function

134

5.2. HOW TO PROGRAM FUNCTIONS

name itself).

• plt.plot(), plt.xlabel(), plt.grid() which is included in the pyplot
module in the matplotlib package (pyplot is represented here with
"plt" in front of the function name).

Why are these functions made? Some important reasons are:

• Support for reuse: The functions perform a well-defined task and
can be used by all programmers and in many different applications.

• Good program structure: The functions give the programs a
simpler and more transparent structure by solving sub-tasks using. a
single function call. For example, the np.mean() function calculates
the mean of a data series with one function call, and you do not have
to write program code for this from scratch.

• Less chance of error coding: Programming a program part with
a given functionality from scratch every time you need the
functionality increases the chance of error coding compared to
creating a function (which hopefully is flawless) and reusing it.

It is likely that in our programs we will need functionality that is not fully
covered by any of the completed functions. Python allows us to create
functions ourselves, and the reasons for doing so are exactly the same as
mentioned above.

5.2 How to program functions

5.2.1 Basic function definition

As an example, let’s create a function that calculates the value of y
according to. the mathematical formula (function)

y = ax + b (5.1)

There a and b are parameters (constants). x is input variable or
independent variable. y is the output variable or dependent variable. The
program below contains definition of the function and code that uses the
function. The part of the program that is outside the function definition is
often called the main program.

135

5.2. HOW TO PROGRAM FUNCTIONS

Example 5.1 Programming of function

Program name: prog fun intro.py

def fun lin(x, a, b):
y = a*x + b
return y

p0 = 2.5
p1 = 3.0
inn = 10.0
out = fun lin(in, p0, p1)
print(’Result = ’, out)

Running the program:

Result = 28.0

Comments:

• I have named the function fun lin. In general, you are quite free to
choose file names, but cf. 3.3.3.

• The definition of the function starts with the command def followed
by the file name and the function’s arguments, which are the three
arguments x, a and b, separated by a comma in parentheses.

• It is necessary that the definition is before the function is used (in
the program). I have – as usual – written the definition of the
function at the beginning of the program, after the comments about
the program itself indicated at the very top of the program.1

• The three input arguments x, a and b are used as variables in the
function’s program code, which is the program code that expresses
what the function does. These three variables are local to the
function – or belong to the function namespace, which means that
they (local variables) do not exist for use outside the function.
Which namespaces that variables belong to, we look at in more detail
in Chap. 5.3. The local variables are also called the function’s
so-called formal parameters.

1If you know MATLAB programming, you know that functions must be defined there
in the end of the program.

136

5.2. HOW TO PROGRAM FUNCTIONS

• function program code or functional body consists of two lines of
code:

– Code line y = a * x + b, which calculates the value of y as a
function of x, a and b.

– The code line return y, which expresses that the function returns
(to the main program) the calculated value of y. We say that y
is the return argument or output argument of the function.

• The functional body stands indented 4 spaces in relation to the def
command, which is according to. Python Enhancement Proposal
PEP 8 rules at python.org/dev/peps/pep-0008/ for good Python
programming: “Use 4 spaces per indentation level”. In other
program languages, brackets, such as {...}, are used to mark the
function body.

• Two blank lines are inserted between the end of the function
definition and the following program code in the main program, cf.
the PEP 8 rules.

• The program code
p0 = 2.5
p1 = 3.0
inn = 10.0

(in the main program) defines three variables with respective values.

• Program code out = fun lin (in, p0, p1) in the main program calls
the function with the call arguments in, p0 and p1, ie the main
program asks the fun lin() function to return the value of the
function calculated from the actual values of the call arguments, and
this return value becomes 28.0. The function is called with the three
input arguments, p0 and p1, which constitute the function’s so-called
actual parameters ifm. function call. Note that the actual parameters
may have different names than the formal parameters, but they must
be in the same order. (It is actually possible to circumvent the
requirement for the same order, but we will not go into that.)

• The code print (’Result =’, out) shows the text string ’Result =’ and
the value of the output variable in the console.

[End of Example 5.1]

137

5.2. HOW TO PROGRAM FUNCTIONS

5.2.2 How to return more than one value

In the example above, the function fun lin() has a return argument which
has one value, namely the floating point y from the formula or function
y = ax + b. But in general, it is curant to create functions that return
multiple values: Just make sure that the function returns e.g. a tuple or
list or array, which are data types that can consist of multiple elements.

Below is an example of a program where the function returns two values
together in one tuple. The program is a modified version of the program
fun intro.py, see page 5.2.1.

Example 5.2 Function that returns multiple values with tuple

Program name: prog fun tuppel retur.py.

def fun value and slope(x, a, b):
y = a*x + b
dy = a
return (y, dy)

p0 = 2.5
p1 = 3.0
x value = 10.0
(value, slope) = fun value and slope(x value, p0, p1)
print(Function value = ’, value)
print(Slope = ’, slope)

Running the program gives the following results:

Function value = 28.0
Slope = 2.5

Comments:

• The function fun value and slope now returns both the function
value y = ax + b and the slope of the function dy = a (agree, the
latter operation is pretty trivial), collected in the tuple (y, dy).

• The tuple (value, slope) gets a value equal to the returned tuple
value.

[End of Example 5.2]

138

5.2. HOW TO PROGRAM FUNCTIONS

5.2.3 Default value function arguments

A function input argument can be defined with a default value. If for any
reason the user has chosen to not enter this argument in the function call,
the function uses the argument’s default value.

Below is an example of a function with a default value argument. The
program is a modified version of the program prog fun intro.py, see page
5.2.1.

Example 5.3 Function with an argument with default value

Program name: prog fun default arg.py.

def fun lin(x, a, b=5.0):
y = a*x + b
return y

x value = 10.0
p0 = 2.5
p1 = 3.0

out = fun lin(x value, p0)
print(’Resultat = ’, out)

Running the program gives the following results:

Resultat = 30.0

Comments:

• In the function definition, ie in the expression def fun lin (x, a, b =
5.0), the argument b is defined with a default value 5.0.

• In the function shell, ie in the expression out = fun lin (in, p0),
values are specified for the first two arguments. Since the value of the
third argument (b) is omitted in the function call, Python uses the
default value of b.

• The default value arguments must follow the non-standard value
arguments in the function definition. For example, the function
definition def fun lin (x, a = 4.0, b) is incorrect because b stands
after a = 4.0.

139

5.2. HOW TO PROGRAM FUNCTIONS

[End of Example 5.3]

5.2.4 Function call using keyword argument

You can call a function with explicitly naming of the names of the formal
function arguments. This is called function calling with keyword
arguments as actual arguments.

In function calls with keyword arguments, the order of the arguments does
not matter, which is natural since the arguments are crystal-clear in that
the formal argument names are used.

We continue with the example above (the prog fun default arg.py
program), but now add two different ways to call the function - with and
without keyword arguments.

Example 5.4 Function with a keyword argument

Program name: prog fun keyword arg.py.

def fun lin(x, a, b):
y = a*x + b
return y

x in = 10.0
p0 = 2.5
p1 = 3.0

out1 = fun lin(in, p0, p1)
out2 = fun lin(a=p0, b=p1, x=x in)

print(’out1 = ’, out1)
print(’out2 = ’, out2)

Running the program gives the following results:

out1 = 28.0
out2 = 28.0

Comments:

• Function calls without keyword arguments:

140

5.2. HOW TO PROGRAM FUNCTIONS

out1 = fun lin(in, p0, p1)
that produces results 28.0.

• Function calls with keyword arguments:
out2 = fun lin(a=p0, b=p1, x=in)
Here I deliberately changed the order of the actual arguments to
become different from the order of the formal arguments. The result
is 28.0, the same.

[End of Example 5.4]

5.2.5 * args and ** kwargs

*args and **kwargs may almost look like a curse, but stands here for
Python’s functional arguments of a slightly special kind.

Many pre-made functions have *args (abbreviation for arguments) and /
or **kwargs (abbreviation for keyword arguments) among its formal
arguments. The two arguments have in common that they represent one
any number arguments, ie it is up to the user of the functions to determine
the number of arguments.

* args arguments are, in principle, just a list of individual arguments that
can be in the form of values – without names. You can consider this listing
as a Python list.

** kwargs are arguments where each argument is specified by name and
value.

Here we will only look at an example of * args.

Example 5.5 Functions with *args

Program name: prog fun args.py.

import numpy as np

def fun arg test(k, *args):
y = np.sum(args) * k
return y

y = fun arg test(1000, 1, 2, 3)
print(’y = ’, y)

141

5.2. HOW TO PROGRAM FUNCTIONS

Running the program gives the following results:

y = 6000

because the sum of 1, 2 and 3 is 6, which is multiplied by 1000, giving 6000.

Comments:

• The function definition is:
def fun arg test(k, *args)
k is a “normal” argument, while * args represents all arguments
(often considered a list) following the argument named factor.

• Code line:
y = np.sum(args) * k
Inside the function, the sum of the elements in the list, is
multiplied,with k.

• Function call:
y = fun arg test(1000, 1, 2, 3)
1000 is a current argument assigned to the formal argument named
k, while the sequence 1, 2, 3 is a actual argument that can be
considered as a list assigned to the formal argument * args. The
elements in this list are summed in the code np.sum (args).

[End of Example 5.5]

5.2.6 Documentation text (docstring)

You can enter docstring in functions that you create. Documentation text
is text where you can describe the function’s structure, its input and
output arguments and their data types, and what the function does. The
documentation text can be displayed, among other things, using the code
help (the function name), as demonstrated below.

A distinction is often made between so-called single-line and multi-line
documentation.2 Both types are demonstrated below.

One-line documentation text

In the program below I have entered a one-line documentation text within
the function fun lin.

2Guidelines for designing documentation text can be found in the document PEP 257p̊a
https://www.python.org/dev/peps/pep-0257.

142

5.2. HOW TO PROGRAM FUNCTIONS

Example 5.6 One-line documentation text

Program name: prog fun with docstring.py

def fun lin(x, a, b):
"""Calculation of the value of a linear function."""
y = a*x + b
return y

p0 = 2.5
p1 = 3.0
x in = 10.0
out = fun lin(x in, p0, p1)
print(’Result = ’, out)

Running the program:

>>> %run prog fun with docstring.py (or F5 or Run-button i Spyder)
Result = 28.0
>>> help(fun lin)
Help on function fun lin in module main :
fun lin(x, a, b)

Calculation of the value of a linear function.

We see that the document text is displayed in the console.

[End of Example 5.6]

Multi-line documentation text

The example below shows how multi-line documentation text can / should
be written. Mark the indents and the blank line after the first line, which
is assumed to be a heading for the following description.

Example 5.7 Multi-line documentation text

Program name: prog fun with multiple docstrings.py

143

5.3. NAMESPACE

def fun lin(x, a, b):
"""Calculation of the value of a linear function.

x (float) is an independent variable or input variable.
a and b (float) are parameters.
y (float) is a dependent variable or output variable.
"""
y = a*x + b
return y

p0 = 2.5
p1 = 3.0
x in = 10.0
out = fun lin(x in, p0, p1)
print(’Result = ’, out)

The result of running the above program is not shown here.

[End of Example 5.7]

5.3 Namespace

When we create functions, it is important to know the term namespace.
All variables belong to or exist in a namespace, but not outside the
namespace. The relationship between variables and namespaces can be one
of the following:

• The variable is both readable and writable (writable means the value
can be changed) in the namespace.

• The variable is readable only (ie the value can be read but not
changed) in the namespace.

• The variable is neither readable nor writable, ie it does not exist in
the namespace.

Functions define namespaces, see Figure 5.2. (The variable names
globalvar1 and localvar1 are here “random, ie they can generally have
different names.)

144

5.3. NAMESPACE

Figure 5.2: Navnerom

Note:

• locvar1 is readable and writable only within the function (its
namespace), ie not outside. If you try to use localvar1 in a
calculation in your main program, outside of the function, Python
will give an (incorrect) message that the variable does not exist.

• globalvar1 is readable, but not writable, within the function. Thus,
you cannot change the value of globalvar1 with code that you entered
in the function.

The program in the example below demonstrates the difference between
different namespaces.

Example 5.8 Navnerom

The program is based on the program fun intro.py shown on page 136.
print() functions are used to check the existence of the two variables x and
in that belong in namespace like:

• x is a local variable in the fun intro function, which defines the
namespace of x.

• inn is a global variable in the main program, which defines the
namespace to inn.

145

5.3. NAMESPACE

Program name: prog fun name space.py

def fun lin(x, a, b):
y = a*x + b
print(’x locvar fun lin =’, x)
print(’in globvar fun lin =’, in)
return y

p0 = 2.5
p1 = 3.0
in = 10.0
out = fun lin(in, p0, p1)
print(’in globvar mainprog =’, in)
print(’x locvar mainprog =’, x)

Below are comments on this program. Try to figure out the answers to the
question at each point. The solution is at the end of this example.

• The code print (’in globvar fun lin =’, in) inside the fun lin function
tries to print the value of the global variable named in.
Success or failure?

• The code print (’x locvar fun lin =’, x) inside the fun lin function
tries to print the value of the local variable x.
Success or failure?

• The code print (’in globvar mainprog =’, in) in the main program
tries to print the value of the global variable in.
Success or failure?

• The code print (’x locvar mainprog =’, x) in the main program tries
to print the value of the local variable x.
Success or failure?

Running the program:

>>> %run fun navnerom.py (or F5 or Run-button in Spyder)
in globvar fun lin = 10.0
x locvar fun lin = 10.0
in globvar mainprog = 10.0
...
print(’x locvar mainprog =’, x)
NameError: name ’x’ is not defined

146

5.4. PROGRAMMING OF MODULES

Conclusion: Success! Success! Success! Failure!

[End of Example 5.8]

We can conclude this subchapter as follows:

• Local variables defined in functions cannot be used outside the
function. If their value is to be used outside the function (in the
main program), they must be passed there as a return variable from
the function.

• Global variables are directly available for reading (not writing)
within functions. But it is considered rather poor program technique
to read global variables inside functions, since the function’s interface
with the main program is then not well defined. The interface is well
defined if all data exchange with the main program takes place via
arguments in the function shell, so this is the recommended way to
transfer data.

5.4 Programming of modules

One module is a script that contains functions and / or variables. You can
use these functions and variables in a main program after importing the
module into the program. Figure 5.3 illustrates the relationship between a
module and main applications.

147

5.4. PROGRAMMING OF MODULES

Figure 5.3: The relationship between a module with its functions and/or
variables and main programs where the module is imported

What benefit can you have of modules?

Probably the most important use of modules is that you (in modules) can
collect functions and variables that you use in several programs – ie
“multi-use functions” and “multi-use variables” – thus avoiding having a
copy of them in each of the programs. Therefore, you can have better
control over your functions and/or variables if they are to be reused.

Import of modules to the (main) program

The import command is used to import a module.

It may be convenient to rename the module to a short name when
importing the module, and using the short name in the program, just as
when the numpy package is renamed to the short name np when importing
numpy (as we have seen in many examples earlier in the book).

Example: The module my module can be renamed to mm using the
following code in the program:

import min modul as mm

When using imported functions and variables in the program, the module
name must be included in this way (the names function1 and var1 are
random here):

148

5.4. PROGRAMMING OF MODULES

mm.funksjon1

and

mm.var1

Example 5.9 Import of our own module

This example works the same way as the prog fun intro.py program, see
page 136, but we will now define our own developed function fun lin() in a
module and not directly in the program. The variables p0 and p1 must
also be defined in this module. The function and the two variables are
made available in the program by importing the module.

The main program is shown in the box below.

Program name: prog module.py.

import my module as mm

x in = 10.0
out = mm.fun lin(x in, mm.p0, mm.p1)
print(’Result = ’, out)

The module is shown in the box below.

Module name: my module.py.

def fun lin(x, a, b):
y = a*x + b
return y

p0 = 2.5
p1 = 3.0

The result of running the main program is:

Reloaded modules: my modul
Result = 28.0

[End of Example 5.4]

149

5.5. LAMBDA FUNCTIONS

5.5 Lambda functions

Lambda functions is a special type of functions in Python that can be used
to solve simple calculations. Some important characteristics:

• They are not defined with the def command.

• They have no local variables.

• They are usually written on one line of code.

Lambda functions can be used as a kind of calculator based on a formula.
Lambda functions are not assigned a name, which is why they are also
called anonymous functions.

The syntax is shown in the following example where we create a lambda
function to calculate

y = a*x + b

where x, a and b are arguments, and y is arguments. (The Lambda
function in the example below does the same job as the regular function
that we developed in Chap. 5.2.1.)

Example 5.10 Lambda functions

y = lambda x, a, b: a * x + b
out = y(10, 2.5, 3)
print(’out = ’, out)

We see that the Lambda function is defined in only one line:

y = lambda x, a, b: a * x + b

there:

• The input arguments are x, a and b, which are listed, separated by
commas.

• The function (formula) is a * x + b that uses the arguments.

150

5.5. LAMBDA FUNCTIONS

• The output argument is y, which is calculated by the function
(formula).

The actual call of the lambda function is

out = y(10, 2.5, 3)

Running the program gives the result:

out = 28.0

[End of Example 5.10]

151

Chapter 6

Testing your own code

6.1 Introduction

Don’t trust yourself completely. The programs you develop will probably
have errors.

There are two main types of errors:

• Syntax Error, which are purely “technical” errors, e.g. that you have
forgotten a parenthesis or entered a function name incorrectly or the
like. The programming environment that you are using will indicate
syntax errors in some way. For example, Spyder provides good
information about syntax errors, cf. 2.2.4.

• Functional errors, which are errors in the program logic or
algorithms. Functional errors can be very difficult to find!

In this chapter, we will concentrate on testing with the aim of finding any
functional errors.

Who should test?

• You (the programmer)?

• A test user?

• The end user, who expects to get a program that works correctly?

152

6.2. HOW TO TEST FOR FUNCTIONAL ERRORS?

The end user is excluded. Admittedly, it is good to hear about any bugs in
the program, but the end user should not test, but instead rely on the
program to function properly.

It is very good if you have a test user at your disposal. It is useful that
others than yourself try the program you have developed. A potential end
user can also act as a test user in a test phase.

Whether or not you get help from others for testing:

You must test the program yourself!

6.2 How to test for functional errors?

A program consists of a main program that uses one or more proprietary
sub-programs in the form of functions or modules, see Figure 6.1.

Figure 6.1: Main program with sub-programs with their inputs and outputs

You must test:

• Sub-program 1

• Sub-program 2

• Main program – after testing the sub-programs

How do you test the programs? Here’s a recipe:

153

6.2. HOW TO TEST FOR FUNCTIONAL ERRORS?

1. Assume a typical (normal) value of the sub-program’s inputs (input
arguments). Run the program with these values. Does the program’s
initial value correspond to an analytical value, which is a value you
can calculate “on paper”?

2. Repeat step 1, but with a representative number of other input
values.

3. Assume abnormal values of the input values, which may be values
that you assume the user entered incorrectly, e.g. a negative number
as an input to a function where you have actually assumed only
positive input values. Notice how the program responds to these
abnormal input values. Does the program stop? Does Python give
an error message? Should you limit the range for possible input
values? Should you program alerts for the user?

Testing must be documented, e.g. based on table 6.2. The table applies to
a specific example, which is presented below.

What How Who When Result Comm.

fun losn 2grads likn()

Uses different sets

of coefficient values

(a, b, c). Must

yield the same

result as analytical

solution. The

function must also

handle negative

discriminant.

FH 15.6 2019 Ok -

Table 6.1: Documentation of program testing

In the example that follows, we will program a function for solving 2nd
order equations. Note: There is something wrong with the program (that
is what the purpose of the example is :-).

Example 6.1 Testing of your own function

We assume a general 2nd order equation:

ax2 + bx + c = 0 (6.1)

154

6.2. HOW TO TEST FOR FUNCTIONAL ERRORS?

I think that the two solutions are1

x1 =
b +
√
b2 − 4ac

2a
(6.2)

and

x2 =
−b +

√
b2 − 4ac

2a
(6.3)

and that any concurrent solution yields discriminant equal to zero:

D = b2 − 4ac = 0 (6.4)

The program is shown below.

Program name:

import numpy as np

def fun losn 2grads likn(a, b, c):
x1 = (b + np.sqrt(b*b - 4*a*c))/(2*a)
x2 = (-b + np.sqrt(b*b - 4*a*c))/(2*a)
return (x1, x2)

a = 1.0
b = 0.0
c = -4.0
(x1, x2) = fun losn 2grads likn(a, b, c)
print(’x1 =’, x1)
print(’x2= ’, x2)

The result is:

x1 = 2.0
x2= 2.0

The fact that the solutions are “something with 2” seems reasonable based
on the given coefficient values, so it is tempting to conclude that the
program gives the correct answer.

1;-)

155

6.2. HOW TO TEST FOR FUNCTIONAL ERRORS?

But, let’s test the program:

Test 1

Let’s put the solutions into the given equation and see if the right side
value really becomes zero, which is specified. For such a calculation we can
create a program that calculates the value of the right-hand side, but here
it is easier to do the hand calculation. The two solutions are the same, so
we set x1 = x2 = 2.0 in for x i (6.1) and get

1 · 2.02 + 0 · 2.0− 4.0 = 0 (6.5)

that’s right! Thus, 2.0 is a solution. So far, nothing indicates that
something is wrong. But you may remember that with two concurrent
solutions, the discriminator equals zero.

Test 2

We calculate the discriminant, D:

D = b2 − 4ac = 02 + 4 · 1 · (−4) = −16 (6.6)

which is different from zero!

Since the program failed both tests, we must conclude that the program
has one or more errors.

We therefore review the program code once again. The code is correct in
that it implements the solution formulas (6.2) and (6.3). So then there
must be something wrong with one or both of the solution formulas. There
are actually errors in both formulas. The correct ones are

x1 =
−b +

√
b2 − 4ac

2a
(6.7)

and

x2 =
−b−

√
b2 − 4ac

2a
(6.8)

Once we have fixed the errors, we run the tests again. (The result of this is
not shown here.)

Test 3

In the testing above, we used examples of coefficient values (a, b, c) which
did not create problems in relation to the sign of the discriminant, D, ie D

156

6.3. HOW TO RUN ONLY PART OF THE PROGRAM?

was not negative. But let’s assume that it is conceivable that the user of
the program will enter values that give negative D. For negative D there
are no real solutions of the 2nd degree equation; The solutions are complex
numbers. How our program responds to the negative D? Let’s try

a = 1, b = 0, c =4

The result is Python for Python (nan stands for not-a-number):

x1 = nan
x2 = nan
C:/techteach.no/publications/python/scripts/prog losn 2grads likn.py:14:
RuntimeWarning: invalid value encountered in sqrt x1 = (-b + np.sqrt(b*b
- 4*a*c))/(2*a)
C:/techteach.no/publications/python/scripts/prog losn 2grads likn.py:15:
RuntimeWarning: invalid value encountered in sqrt x2 = (-b - np.sqrt(b*b
- 4*a*c))/(2*a)

It appears that the np.sqrt() function is unable to calculate complex
solutions. That’s a bit stubborn, I think, but we have to accept it, of
course. Then we have two options:

1. Find a function, as an alternative to np.sqrt(), that is capable of
calculating complex solutions.

2. Continue using np.sqrt() in the program, but notify the user that
there are no real solutions to the specified coefficient values if the
discriminator is negative.

I stop the example her, but you may try the above two options.

[End of Example 6.1]

6.3 How to run only part of the program?

Sometimes we want to run only part of the program code to see if it works.
In Spyder, it can be done as follows:

1. Select the current program section.

2. Run the program section by making one of the following choices:

157

6.3. HOW TO RUN ONLY PART OF THE PROGRAM?

(a) The Run / Run selection or current line menu option

(b) Menu button Run / Run selection or current line

(c) F9 key on the keyboard

Of course, it is necessary that variables included in the program part to be
run are already defined, ie are in the workspace.

158

Chapter 7

Conditional program
execution with if-structures

7.1 if-else

With an if-program structure we can control the program execution, see
Figure 7.1. If the if condition has a Boolean value of True, the program
part is executed in the if branch. I have called this code section for
CODE IF. Otherwise, ie if the if condition has a Boolean value of False,
the program part is executed in the else branch, ie the code in
CODE ELSE. Of course, it is up to us to enter Python code into these two
alternative code sections.

159

7.1. IF-ELSE

Figure 7.1: If-else structure

The program execution is therefore governed by the boolean (logical) value
of the if condition. We construct the if condition with logical operators
and comparison operators, cf. 3.8.

The program code below demonstrates programming with the if structure.
The program has an if branch and an else branch. The comparison
expression (x> y), where x and y are numbers, determines which branch is
run, cf. the detailed comments below.

Program name: prog if else.py

x = 10
y = 0
if (x > y):

print(’(x > y) =’, (x > y))
print(’The If branch is active.’)

else:
print(’(x > y) =’, (x > y))
print(’The Else branch is active.’)

print(’This is the first code line after the if structure.’)

As demonstrated in the program above:

• The code lines according to the if condition must be indented. The
same applies to the code lines according to the else condition. The

160

7.2. WITHOUT ELSE

Python standard is indented with 4 spaces.

• There should (not must) be a blank line between the last code line in
the if structure and subsequent code lines.

The box below shows the result of the run with the values x = 10 and y =
0. The comparison expression (x> y) then has a Boolean value True, which
means that the if branch is active. The code that is then executed, ie
CODE IF in Figure 7.1, are the following two calls of the print() function:

• The code print (’(x> y) =’, (x> y)) which prints the text ’(x> y) =’
and the boolean value of the comparison expression (x> y).

• The code print (’if branch is active.’).

(x > y) = True
if branch is active.
This is the first code line after the if structure.

The box below shows the result of the run with the values x = –10 and y
= 0. The expression (x> y) then has a Boolean value False, which means
that the else branch is active. The code being executed, ie CODE ELSE in
Figure 7.1, are two calls of the print() function (not reproduced here).

(x > y) = False
else branch is active.
This is the first code line after the if structure.

7.2 Without else

The if structure doesn’t really need to include anything else, see Figure
7.2. If the if condition has the value False, the program skips all code
contained within the if structure.

161

7.2. WITHOUT ELSE

Figure 7.2: Program flowchart for an if structure without else

The program code below demonstrates programming an if structure
without else.

Program name: prog if.py.

x = 10
y = 0
if (x > y):

print(’(x > y) =’, (x > y))
print(’if branch is active.’)

print(’This is the first code line after the if structure.’)

The box below shows the result of the run with the values x = 10 and y =
0. The comparison expression (x> y) then has a Boolean value of True,
which means that the if branch is active.

(x > y) = True
if branch is active.
This is the first code line after the if structure.

The box below shows the result of the run with the values x = –10 and y
= 0. The comparison expression (x> y) then has a Boolean value False,
which means that the if branch is inactive. And since there is no other
branch here, the program goes straight to the code line after the if
structure, which is print (’This is the first code line after the if structure.’).

162

7.3. ELIF

This is the first code line after the if structure.

7.3 elif

And so we have elif. Both elif and else are used to define code that is run if
the if condition is False. But elif is narrower than else. You can specify
your own elif condition (while you do not specify your own else condition).
This is demonstrated in the program below.

Program name: prog elif.py.

x = 0
y = 0
if (x > y):

print(’if branch is active.’)
elif (x == y):

print(’elif branch is active.’)
else:

print(’else branch is active.’)

print(’This is the first code line after the if structure.’)

The box below shows the result of the run, where x = 0 and y = 0, which
means that the elif condition (x == y) is True, which makes the elif
branch active.

elif branch is active.
This is the first code line after the if structure.

163

Chapter 8

Iterated program runs with
for loops and while loops

8.1 Introduction

Loops are very useful program structures. With loops, you can iterate
(repeat) program code as many times as you like – automatically!

Loops are used in a variety of contexts, including:

• Mathematical operations on arrays and lists, etc. where the loop
iterates the operations on the elements

• Solving equations with an iterative method (until the solution is
found with sufficient accuracy)

• Optimization (find the maximum or minimum of a function) with an
iterative method (until the optimal value is found with sufficient
accuracy)

• Simulation where the mathematical model equations are solved for
each time in the simulation interval

The present version of this book does not cover the above applications. I
assume that you are to work on such applications in other contexts
(courses or projects). Here and now my aim is only to describe looping
techniques in Python.

164

8.2. FOR LOOPS

In this chapter we will take a closer look at the two main types of loops in
Python:

• For loops, which are loops that iterate a predetermined number of
times, e.g. as many times as there are elements in a given array on
which the loop should operate. (Chap. 8.2.)

• While loops, which are loops that iterate as long as a continue
condition is satisfied. In principle, the number of iterations is in
while loops not known in advance, which is a significant difference
from for-loops where the number of iterations is determined before
starting the loop. (Chap. 8.3.)

Figure 8.1 illustrates for-loops and while-loops with program flow charts.
The for loop runs a predetermined number (N) times.

Figure 8.1: Program loop charts for for loop and while loop: Program loops
are used to iterate program code execution.

8.2 For loops

8.2.1 Basic programming of for loops

The program code below demonstrates basic programming of for-loops.

Example 8.1 For loops

Symbol use in the program code:

165

8.2. FOR LOOPS

• k is the iteration index of the loop. k is 0 at the first iteration of the
loop.

• E represents the current element in the array.

Program name: prog for loop read.py

import numpy as np

A = np.array([5, 10, 15])
k = 0

for E in A:
print(’k =’, k)
k = k + 1
print(’E =’, E)
print(’-----------------’)

print(’This is the first code line executed after the loop has stopped.’)

The result of the run:

k = 0
E = 5

k = 1
E = 10

k = 2
E = 15

This is the first code line executed after the loop has stopped.

Comments:

• The for loop iterates as many times as there are elements in the
array A, starting with the first element in the array.

• For each iteration of the loop, we can access the relevant element (E)
in the array (A). In this example, I use the print() function to
display the value of E in the console.

• At each iteration of the for loop, the loop index k is equal to the
value of the number of times the for loop has iterated.

166

8.2. FOR LOOPS

A technicality: I implemented the update of k at each iteration with
the code: k = k + 1, which increases the previous value of k by 1.
Alternative code is: k + = 1.

• The code inside the for loop must be indented (python: indented). It
is a Python standard with 4 space indents.1

• The code line print (’-----------------’) is for cosmetic reasons only.

• The very last line of code, ie the code line print ("This is the first
code line executed after the loop has stopped."), is here displayed to
demonstrate that there should (not must) be a blank line between
the last line of code in the for loop and subsequent code lines.

• In this example, I have used array (A) as the so-called iteration
element, but also other data types consisting of a sequence or series
of data can be used, as lists and tuples.

[End of Example 8.1]

8.2.2 How to write to array elements in a for loop

In the program example above, the elements of an array are read as the for
loop iterates. We can also write values to array elements, as shown in the
example below, to write values to an array that has 10 elements.

Example 8.2 For loop

Note: In this example, the array to which values are to be written is
created in advance, ie before the for-loop starts. This is so-called
preallocation of the array. Preallocation is a good programming technique
since it can make the program spend far less time running than without
preallocation. Running times with and without preallocation are shown in
the example 8.3.

Program name: prog for loop write.py

1In other program languages, it is common to use parentheses to mark the start and
end of the program code inside loops, but in Python, indentation is used. Indentation
helps to make the program appear structured and clearly cosmetic (but the logic of the
program may just as well be unclear).

167

8.2. FOR LOOPS

import numpy as np

A = np.zeros(10)
N = len(A)
k = 0

for k in range(0, N):
A[k] = 10*k

print(’A =’, A)

The result of the run is the following array, which has 10 elements:

A = [0. 10. 20. 30. 40. 50. 60. 70. 80. 90.]

Comments:

• The code A = np.zeros (10) creates an array A with 10 elements,
each of which has a value of 0. A value is to be written to each of the
elements in this array when the for loop iterates. That the array is
created before the for-loop starts is called the preallocation of the
array.

• The code N = len (A) gives N value equal to the number of elements
in the array A.

• The code k = 0 sets the loop index to zero before the loop starts.

• The code for k in range (0, N) causes the loop to iterate N times.
Note: k gets the values 0, 1, ..., 8, 9 as the loop iterates. Thus, the
last value of k is N-1 = 9, and not N = 10.

• At iteration k, the value 10 * k is written to the array element A [k].

• The code k = k + 1 increases the loop index k by value 1.
Alternatively, we could have written k + = 1.

• The code print (’A =’, A) shows the resulting value of the array A in
the console.

[End of Example 8.2]

168

8.2. FOR LOOPS

8.2.3 Preallocation of arrays to save execution time

As mentioned, it can be a lot of time to save on preallocating arrays to
write values to iteratively (in a loop). Figure 8.2 illustrates two principles
for iterative data writing in an array:

• Continuous expansion of an array with the np.append() function

• Writing to a preallocated array.

Python spends relatively much time expanding an existing array of new
elements. That is why we should have as few such operations as possible in
our programs. We can save a lot of execution time by creating the array
with the sufficient number of elements in advance, perhaps with a value of
0 in all the elements,and then write values to the elements in that array (in
the loop). This is preallocation of the array.

Figure 8.2: Illustration of two principles for iterative writing of data in
array: (1) Continuous expansion of an array with np.append() function and
(2) writing to the preallocated array.

Here is an example that demonstrates the time savings that preallocation
can provide.

Example 8.3 The importance of preallocation

169

8.2. FOR LOOPS

Some comments on the program shown below:

• The program writes values to two arrays with 100,000 elements. The
value written to element # k is 10 * k.

• For one array, called dyn array, values are written using. np.append()
- function. dyn array is not preallocated and is expanded with the
append() function for each iteration of the for-loop.

• For the second array, called preallok array, values are written at each
iteration through accessing the current element of the array.
preallok array is preallocated, ie created before the for loop starts.

• The time to run the relevant program sections is measured using.
function time() in the time packet, which is imported with the code
import time at the top of the program.

• At the end of the program, the resulting running times without
preallocation and with preallocation are compared.

Here is the program:

Program name: prog time preallocation array.py

170

8.2. FOR LOOPS

--
Import:

import numpy as np
import time

--
Initialisering:

N = 100000
dyn array = np.array([])
preallok array = np.zeros(N)
--
append:

tic = time.time()
for k in range(0, N):
dyn array = np.append(dyn array, 10*k)
toc = time.time()
t elapsed append = toc - tic
--
preallok:

tic = time.time()
for k in range(0, N):
preallok array[k] = 10*k
toc = time.time()
t elapsed preallok = toc - tic
--
Sammenlikning:

ratio append preallok = t elapsed append/t elapsed preallok
print(’--’)
print(’N =’, N)
print(’t elapsed append [s] = ’,t elapsed append)
print(’t elapsed preallok [s] =’, t elapsed preallok)
print(’t elapsed append/t elapsed preallok =’, ratio append preallok)
print(’--’)

Result of a run (rounded numbers):

171

8.3. WHILE LOOPS

N = 100000
t elapsed append [s] = 4.982
t elapsed preallok [s] = 0.03000
t elapsed append/t elapsed preallok = 166.1

Comments:

• The preallocation program of the array to which data is written runs
approximately. 166 times less time than without preallocation (with
np.append() function). Actually, there may be a lot of real time to
save: Suppose that in another case, with the ratio of run time as in
our original example, it takes 1 minute to run the program with
preallocation. It will then take 166 minutes, ie not far from 3 hours,
to run the program without preallocation. Assume you need the
result of the loop in some subsequent task... You can draw the
conclusion about selecting between preallocation and no
preallocation yourself.

• Of course, the ratio 166 applies only to this test, but I have seen
significant time savings in other examples as well.

[End of Example 8.3]

8.3 While loops

While loops are loops that iterate as long as a given continue condition is
satisfied. Figure 8.1 illustrates while loop with a program flowchart.

In principle, the number of iterations in while loops is not known in
advance. In Chap. 8.2.3 we saw that the preallocation of arrays can
greatly save the run time of a program where values are written to the
array inside the for loop. Since the number of iterations in while loops is
not known in advance, it may be more difficult to implement the
preallocation of arrays in the context of while loops. But preallocation can
still be realized if one knows an upper limit on the number of times the
loop will be iterated. After all, it’s only possible to preallocate an array of
length equal to this greatest number of times.

The continue condition shown in Figure 8.1 is, in the python-technical
sense, a logical expression that has either the value True or False:

• If the value is True, the while loop continues to iterate.

172

8.3. WHILE LOOPS

• If the value is False, the iteration stops and Python continues to run
the program code after the while loop.

We construct the continue condition with logical operators and comparison
operators, cf. 3.8.

The program code below demonstrates basic programming of while loops.

Program name: prog while loop.py

k = 0
while (k < 5):

print(k)
k = k + 1 #Alternatively: k += 1

print(’This is the first code line executed after the loop has stopped.’)

The result of the run:

0
1
2
3
4
This is the first code line executed after the loop has stopped.

Comments:

• The while loop is iterated as long as the continue condition (k <5) is
satisfied.

• In each iteration, the following occurs:

– The value of k is written to the console with the print()
command.

– The value of k is increased by 1 with the code k = k + 1, which
can alternatively be written k + = 1.

• When k becomes 5, the continue condition is not satisfied and the
loop stops. The program then goes to the program code that appears
after the (below) while loop, ie the code: print(’This is the first code
line executed after the loop has stopped.’).

• In the continue condition, the comparison operator < is used, cf.

173

8.3. WHILE LOOPS

Table 3.4. You can drop the parentheses around k <5.2

• The code inside the while loop must be indented (python: indented).
It is a Python standard (the PEP 8 guidelines) with 4 space indents
(as for the for loops).

• The very last line of code, ie the code line print ("This is the first
code line executed after the loop has stopped."), is here displayed to
demonstrate that there should (not must) be a blank line between
the last line of code in the while loop and subsequent code lines.

2I myself prefer to include this unnecessary parenthesis because the code is then easier
to read.

174

Chapter 9

Write and read file data

9.1 Introduction

Suppose you have useful numerical data from a calculation or a simulation
or an experiment. You may want to write the data to (save the data on) a
file so that you can read it later for plotting or analysis or data
manipulation, or send it to someone else who can use the data.

In this chapter we will see how we can write and read data files.

9.2 File Formats

The numeric data can be stored on file in two alternative formats:

• Textual data files

• Binary data files

Let’s take a closer look at these two file formats.

9.2.1 Textual data files

Textual data files are files where the data is in the form of numbers which
are strictly text and which you can therefore read yourself, eg. 1.2 and
-18.57 with decimal point or 1.2 and -18.57 with decimal point. In this

175

9.2. FILE FORMATS

context, the numeric characters are text characters! You can open text
files – even if they contain only numeric characters – with word processors
such as Word and Notepad and spreadsheet programs such as Excel or
similar OpenOffice programs, etc. and literally (!) see the data there.

Example 9.1 Textual data file from an experiment on an air heater
process

Figure 9.1 shows a laboratory model of an air heater process1.

Temperature

sensor 1

Temperature

sensor 2

NI USB-6008

for analog I/O

Manual fan

speed

adjustment

On/Off

switch

PC with

LabVIEW

USB cable

Electrical heater

Fan

Mains cable

(220/110 V)

3 x Voltage AI (Temp 1, Temp 2, Fan indication)

1 x Voltage AO (Heating)

Air

Pulse Width

Modulator

(PWM)

PWM

indicator

AC/DC

converter

Pt100/

milliampere

transducer

Air tube

T_out [C]

T_env [C]

Figure 9.1: Air heater

Figure 9.2 shows a textuial data file, opened in Notepad, with data from
an experiment on the air heater process. The data file has the following
three columns of data (from left):

• Time stamps [s]

1http://home.usn.no/finnh/air heater

176

9.2. FILE FORMATS

• Control signal to the heating element (“Electrical heater” in Figure
9.2) [V]

• Temperature measurement (from “Temperature sensor 1” in Figure
9.2) [oC]

Figure 9.2: Test-based data file opened in Notepad (Notepad)

[End of Example 9.1]

It is common to represent data files in the form of text files because:

• You can see the numbers (as number signs), so you can check your
data visually.

• You can assume that any special tools for analyzing and plotting and
manipulating data can handle textuial data files. (They will also be
able to handle data files that have some special format, which will
then be a binary file, see below.) Examples of such special tools are
MATLAB, LabVIEW, Octave and Excel. Text files are thus a
flexible data format.

In this chapter we will take a closer look at how we can write data to and
read data from text files, but let’s first take a look at binary files.

9.2.2 Binary data files

Binary data files – or just binary files – can contain number data, as text
(data) files do, but in binary files, the data is represented in a more

177

9.3. WRITE DATA TO FILE

compact form than in text files and in some code that people cannot read.
Only special tools (programs) can read the information in binary files.

Figure 9.3 shows an example of a binary file, namely a mat file (generated
in the MATLAB software) opened in Notepad. The data in the file are
measured values from a biogas reactor: temperature, biogas flow, methane
concentration, etc. Except for information about the file itself at the top of
the file, the content is not readable to us. But the content is fully readable
in MATLAB.

Figure 9.3: A binary file opened in Notepad

We can store data in the form of binary files in Python, but I will not go
into this further since text data files are far more convenient, even though
they are typically larger than binary files with the same information
content.

9.3 Write data to file

The open() function available in Python’s standard package, see Ch. 2.6.2,
can be used to write data of different types to file. open() is thus a general
function. This book focuses on using Python for calculations, and the data
is then typical numbers, most often floating numbers. The Numpy library
has the savetxt() function tailored to our purpose: “Save an array to a text
file”, cf. documentation on

https://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html

178

9.3. WRITE DATA TO FILE

It seems easier – at least to me – using savetxt() rather than open() to
write numeric data to text file. I therefore concentrate on savetxt() in this
chapter.

When using savetxt() in a program, we need to type np.savetxt() if we
have imported the numpy package with the command

import numpy as np

np.savetxt() has a number of arguments, but for many of the arguments
the default values will be ok, so we do not need to give explicit values to
these arguments. I guess the most current use of np.savetxt() is:

np.savetxt(fname, X, fmt=’%.18e’, delimiter=’ ’)

Here is a description of the individual arguments:

• fname (file name) is the name you give the file, quoted in quotation
marks, e.g. ’Eksperiment1.txt’.

• X represents the name of the variable to be stored, e.g. sensordata1.
The variable must have data type array, either 1D array or 2D array.

• fmt (format) determines the format by which the numbers are stored
in the file. The default value is ’% .18e’, which means that the
numbers are stored in exponential form by 18 digits after the decimal
point, e.g. 1.123456789123456789e + 02 where e + 02 means 10 ˆ
{2}. The number before the decimal point will be an integer in the
range 1 - 9. It is possibly overkill to have 18 digits after the decimal
point. A proposal is 3, which means that 4 digits determine the
number in addition to the 10’s exponent.

• delimiter = ” (note: there are spaces between quotes) indicates that
spaces are used to separate the columns in the file. Space is thus the
default value. You may use a comma, and then use delimiter = ’,’.

Here’s an example where we’re going to create a 2D array of columns equal
to two given 1D arrays and then write the 2D array to file.

Example 9.2 Writing 2D array to np.savetxt file()

179

9.4. READ DATA FROM FILE

I hope the code in the box below is self-explanatory.

Program name: prog savetxt.py

Note that the two 1D arrays turn into columns in the 2D array, which is
realized with the transpose method (T) of the np.array array object ([A1,
A2]), cf. Example 3.33 on page 96.

import numpy as np

A1 = np.linspace(0, 1, 7)
A2 = np.linspace(0, 2, 7)
M = np.array([A1, A2]).T
np.savetxt(’datafil 1.txt’, M, fmt=’%.3e’, delimiter=’ ’)

Figure 9.4 shows the file datafil 1.txt opened in the Notepad program.

Figure 9.4: Datafile datafil 1.txt opened in Notepad

[End of Example 9.2]

9.4 Read data from file

The function open() in Python’s standard package, see chap. 2.6.2, can be
used to read data from files, but for the same reason as for writing data to
file, cf. Section 9.3, I recommend using instead the loadtxt() Numpy
function, which reads the numeric data in a text file and save it as an
array in the Python workspace.

Documentation of loadtxt() is available at

180

9.4. READ DATA FROM FILE

https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

When we use loadtxt() in a program, we must type np.loadtxt() if we have
imported the numpy package with the command

import numpy as np

np.loadtxt() has a number of arguments, but for many of the arguments,
the default values will be ok, so we do not need to give explicit values to
these arguments. I guess the most current use of np.loadtxt() is:

np.loadtxt(fname, delimiter=’ ’)

Here is a description of the individual arguments:

• fname (file name) is the name you give the file, quoted in quotation
marks, e.g. ’Eksperiment1.txt’.

• delimiter = ” (note: there are spaces between quotes) indicates that
spaces are used to separate the columns in the file. Space is thus the
default value. If instead a comma is used to separate the columns in
the file, use delimiter = ’,’.

Here is an example of using np.loadtxt().

Example 9.3 Read 2D array from file with np.loadtxt()

The program below reads the number data stored in datafil 1.txt, which we
created in the example 9.2, and returns the data as a 2D array here called
M. Two 1D arrays A1 and A2 are extracted from respective columns in M.

import numpy as np

M = np.loadtxt(’datafil 1.txt’, delimiter=’ ’)
A1 = M[:, 0]
A2 = M[:, 1]

print(’M =’, M)
print(’A1 =’, A1)
print(’A2 =’, A2)

181

9.4. READ DATA FROM FILE

The result of running the program is:

M = [[0. 0.]
[0.1667 0.3333]
[0.3333 0.6667]
[0.5 1.]
[0.6667 1.333]
[0.8333 1.667]
[1. 2.]]

A1 = [0. 0.1667 0.3333 0.5 0.6667 0.8333 1.]
A2 = [0. 0.3333 0.6667 1. 1.333 1.667 2.]

[End of Example 9.3]

182

Bibliography

Haugen, F. A. (2019), Automatic Control, ’home.usn.no/finnh/books’.

Langtangen, H. P. (2016), A Primer on Scientific Programming with
Python, Springer.

Linge, S. & Langtangen, H. P. (2016), Programming for Computations -
Python, Springer (Open Access).

183

Index

**kwargs, 141

*args, 141

A

aksessere, 72

Anaconda distribution, 17

and, 66

anonymous functions, 150

args, 141

B

bar charts, 106

bar graph, 121

binary files, 177

block comments, 10

boolean variable, 66

built-in functions, 43

C

cancel, 23

casting, 62

Checkpoint, 33

command, 21

concatenate, 61

conda, 42

D

dashboard, 31

datatype casting, 62

default value, 139

del, 76

delete, 76

dictionary, 79

docstring, 142

E

editoren, 19

element-wise, 104

elif, 163

events, 127

execute, 21

F

filekstensjon, 32

floting point number, 57

format, 57

formelle parametre, 136

function, 22

functional errors, 152

funksjoner, 55

funksjonskropp, 137

G

Graphical User Interface, 127

GUI, 127

H

head, 10

histogram, 125

histograms, 106

hjelp, 27

Hjelp-vinduet, 20

I

if, 159

import, 42, 46

inline comments, 10

input argument, 22

input(), 63

integer, 57

interactive plots, 127

IPython console, 20

iterables, 70

184

INDEX

J

Jupyter Notebook, 30

K

kernel, 30

key, 79

keyword arguments, 140

kolonnevektorer, 93

konsollen, 20

konvertere, 62

kwargs, 141

L

Lambda functions, 150

legend, 113

line plots, 106

liste, 69

localhost, 32

logical operators, 66

logical variable, 66

loops, 164

M

magic command, 25, 110

main program, 135

matplotlib, 106

matrix object, 97

matrixes, 86, 96

modul, 147

moduler, 47

N

namespace, 144

not, 66

O

objects, 56

or, 66

P

packages, 41

PEP 8, 11

pie chart, 123

pie charts, 106

pip, 42

plottfigur, 110

preallocation, 167, 169

preallokering, 102

print(), 57

programflytdiagram, 65

programflytdiagrammer, 165

prompt, 50

PSF, 6

PyPA, 42

pyplot, 108

Python Packaging Authority, 42

Python Software Foundation, 6

R

radvektorer, 93

returargument, 137

return argument, 138

run, 21

Run file, 21

S

script, 20, 23

sequences, 70

slicing, 72

standard package, 44

STEM, 14

strings, 61

subplott, 117

syntaksfeil i Spyder, 28

T

text strings, 61

textbox, 127

textual data files, 175

three-dimentional, 86

transpose, 94

truth tables, 67

tuples, 77

two-dimentional, 86

typekonvertering, 62

U

underscore variable, 52

user interface, 127

185

INDEX

V

value, 79

variabel, 51

vectorized multiplication, 104

vectors, 96

vektorisering, 101

vektors, 86

Visual Studio Code, 36

W

while loop, 172

widgets, 127

workspace, 12, 51

186

	Introduction
	About Python
	Python - in few words
	Why choose Python?
	How popular is Python?
	When is Python not useful?
	Who holds the threads?

	Impatient?
	Program input, output and workspace
	Why include programming in teaching?

	Programming environments
	Installation of Python
	Spyder
	How to open Spyder
	How to run Python program code in Spyder
	Run program code on command line
	Run program code via script

	Setting the preferences of Spyder
	Help in Spyder

	Jupyter Notebook
	How to start Jupyter Notebook
	How to create and edit Notebook documents
	How to run Notebook documents
	How to Save Notebook Documents
	Help in Jupyter Notebook

	Visual Studio Code
	How to install and launch Visual Studio Code
	Connect Python to VS Code
	Open (create) workspace
	How to create and run a Python program

	The Python command line in the Anaconda command window
	Import and use of Python packages and modules
	Packages management with conda or pip
	Built-in functions in Python (standard package)
	Import of packages included with the Anaconda distribution
	Installation and import of packages not included with the Anaconda distribution

	Variables and data types
	Introduction
	How to run the code samples?
	Variables
	What is a variable?
	Why use variables when you can always use values?
	How to choose variable name

	A little about functions
	Numbers and basic mathematical operations
	Numbers types
	How to format numbers in print() function
	Mathematical operators

	Text strings (strings)
	From numbers to text and from text to numbers
	Boolean variables, logical operators and comparison operators
	Introduction
	Boolean variable
	Logical operators
	Comparison operators

	Lists
	What are lists?
	Operations on lists
	Reading list elements
	How to update list items with new values
	Expand lists with new items
	Remove list items
	List manipulation with + and *

	Tuples
	Dictionary
	Arrays
	Introduction
	How to convert lists to arrays and vice versa
	Conversion from list to array
	Conversion from array to list

	Create arrays of special design
	Arrays with equal element values
	Array with fixed increment between elements
	Multidimensional or n-dimensional arrays

	Array operations
	Introduction
	The size of an array
	Read element values in an array
	Update elements in an array
	Expand arrays with new elements
	Remove elements from arrays
	Find the maximum and minimum in arrays

	Mathematical operations on arrays, including matrices
	Scalar addition and scalar multiplication
	How to create row vectors and column vectors and arrays
	Vector and matrix multiplications

	Matrix functions for linear algebra
	Vectorized calculations

	Presenting data in charts and diagrams
	Introduction
	Line plot
	Basic plot functions
	Viewing Plots in the Spyder Console or External Window?
	Plot figures to be shown in the Spyder console

	How to plot multiple curves at the same time
	Multiple curves in one and the same diagram
	Multiple plots in a figure using subplot

	Mathematical symbols in chart title
	How to set the size of the plot figure

	Bar charts
	Pie charts
	Histogram
	Interactive plots

	Programming of functions
	Introduction
	How to program functions
	Basic function definition
	How to return more than one value
	Default value function arguments
	Function call using keyword argument
	* args and ** kwargs
	Documentation text (docstring)

	Namespace
	Programming of modules
	Lambda functions

	Testing your own code
	Introduction
	How to test for functional errors?
	How to run only part of the program?

	Conditional program execution with if-structures
	if-else
	Without else
	elif

	Iterated program runs with for loops and while loops
	Introduction
	For loops
	Basic programming of for loops
	How to write to array elements in a for loop
	Preallocation of arrays to save execution time

	While loops

	Write and read file data
	Introduction
	File Formats
	Textual data files
	Binary data files

	Write data to file
	Read data from file

	Bibliography

